3 resultados para unifying concept
em Publishing Network for Geoscientific
Resumo:
Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10 -100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
Resumo:
It is widely assumed that the ability of an introduced species to acclimate to local environmental conditions determines its invasion success. The sea anemone Diadumene lineata is a cosmopolitan invader and shows extreme physiological tolerances. It was recently discovered in Kiel Fjord (Western Baltic Sea), although the brackish conditions in this area are physiologically challenging for most marine organisms. This study investigated salinity tolerance in D. lineata specimens from Kiel Fjord in order to assess potential geographical range expansion of the species in the Baltic Sea. In laboratory growth assays, we quantified biomass change and asexual reproduction rates under various salinity regimes (34: North Sea, 24: Kattegat, 14: Kiel Fjord, 7: Baltic Proper). Furthermore, we used 1H-NMR-based metabolomics to analyse intracellular osmolyte dynamics. Within 4 weeks D. lineata exhibited a 5-fold population growth through asexual reproduction at high salinities (34 and 24). Biomass increase under these conditions was significantly higher (69%) than at a salinity of 14. At a salinity of 7, anemones ceased to reproduce asexually, their biomass decreased and metabolic depression was observed. Five main intracellular osmolytes were identified to be regulated in response to salinity change, with osmolyte depletion at a salinity of 7. We postulate that depletion of intracellular osmolytes defines a critical salinity (Scrit) that determines loss of fitness. Our results indicate that D. lineata has the potential to invade the Kattegat and Skagerrak regions with salinity >10. However, salinities of the Baltic Proper (salinity <8) currently seem to constitute a physiological limit for the species.
Resumo:
The Kiel Outdoor Benthocosm infrastructure (Kiel, Germany,N 54°19.8'; E 010°09.0') allows combining natural in-situ fluctuations on all environmental variables with the controlled manipulation of treatment factors. The environmental fluctuations are admitted by a continuous flow-through of fjord water. The treatment is applied by delta-treatments which shift the mean of target variables (temperature and pH in this case) while maintaining the frequency and amplitude of natural fluctuations. The data presented here show the treatment levels and the continuously logged temperature and pH conditions in the experimental tanks. The dynamics of temperature and pH are driven by (i) in situ variability, (ii) the treatments imposed and (iii) the biology of the biota in the tanks. These contained macroalgal communities with associated mesograzers, mussels, and sea stars. The data set comprised 5 experimental runs: spring experiment (4.4.-19.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (10.10-17.12.2013), winter experiment (16.1. - 1.4.2014), summer experiment 2 (10.7. - 26.9.2014).