4 resultados para turbulence flow
em Publishing Network for Geoscientific
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
This study characterises the shape of the flow separation zone (FSZ) and wake region over large asymmetric bedforms under tidal flow conditions. High resolution bathymetry, flow velocity and turbulence data were measured along two parallel transects in a tidal channel covered with bedforms. The field data are used to verify the applicability of a numerical model for a systematic study using the Delft3D modelling system and test the model sensitivity to roughness length. Three experiments are then conducted to investigate how the FSZ size and wake extent vary depending on tidally-varying flow conditions, water levels and bathymetry. During the ebb, a large FSZ occurs over the steep lee side of each bedform. During the flood, no flow separation develops over the bedforms having a flat crest; however, a small FSZ is observed over the steepest part of the crest of some bedforms, where the slope is locally up to 15°. Over a given bedform morphology and constant water levels, no FSZ occurs for velocity magnitudes smaller than 0.1 m s**-1; as the flow accelerates, the FSZ reaches a stable size for velocity magnitudes greater than 0.4 m s**-1. The shape of the FSZ is not influenced by changes in water levels. On the other hand, variations in bed morphology, as recorded from the high-resolution bathymetry collected during the tidal cycle, influence the size and position of the FSZ: a FSZ develops only when the maximum lee side slope over a horizontal distance of 5 m is greater than 10°. The height and length of the wake region are related to the length of the FSZ. The total roughness along the transect lines is an order of magnitude larger during the ebb than during the flood due to flow direction in relation to bedform asymmetry: during the ebb, roughness is created by the large bedforms because a FSZ and wake develops over the steep lee side. The results add to the understanding of hydrodynamics of natural bedforms in a tidal environment and may be used to better parameterise small-scale processes in large-scale studies.
Resumo:
Large asymmetric bed forms commonly develop in rivers. The turbulence associated with flow separation that develops over their steep lee side is responsible for the form shear stress which can represent a substantial part of total shear stress in rivers. This paper uses the Delft3D modeling system to investigate the effects of bed form geometry and forcing conditions on flow separation length and associated turbulence, and bed form shear stress over angle-of-repose (30 lee side angle) bed forms. The model was validated with lab measurements that showed sufficient agreement to be used for a systematic analysis. The influence of flow velocity, bed roughness, relative height (bed form height/water depth), and aspect ratio (bed form height/length) on the variations of the normalized length of the flow separation zone, the extent of the wake region (where the turbulent kinetic energy (TKE) was more than 70% of the maximum TKE), the average TKE within the wake region and the form shear stress were investigated. Form shear stress was found not to scale with the size of the flow separation zone but to be related to the product of the normalized extent of the wake region (extent of the wake region/extent of water body above the bed form) and the average TKE within the wake region. The results add to understanding of the hydrodynamics of bed forms and may be used for the development of better parameterizations of smallscale processes for application in large-scale studies.