5 resultados para tropical environments
em Publishing Network for Geoscientific
Resumo:
Reworked shallow-water foraminifers that settled on the upper slope of the central Great Barrier Reef at Site 821 (water depth, 212.6 m) were used as indicators of the paleoclimatic and paleoenvironmental conditions that have controlled the Pleistocene evolution of the adjacent platform. Throughout the 400-m-thick sequence drilled, the nature, composition, and distribution of the shallow-water foraminiferal assemblages studied indicate that (1) all the species recorded are at present living in diverse tropical, reef-related areas of the Indo-Pacific and Atlantic provinces; (2) the composition of the microfaunal taphocoenoses is almost identical between the different stratigraphic intervals studied and the modern Great Barrier Reef environments; (3) inner-neritic, tropical environments have continued to develop since the middle Pleistocene; (4) high- to moderate-energy platform edges occurred repeatedly throughout Pleistocene time. These factors may suggest that, since the beginning of the Pleistocene, several reef-like tracts have grown successively on the central area of the northeastern Australian shelf edge. These tracts probably had a sufficiently evolved morphological zonation to act as shelters for foraminiferal biocoenoses of high species diversity.
Resumo:
This paper is based on Santonian-Campanian sediments of Ocean Drilling Program Sites 1257 (2951 mbsl) and 1259 (2353 mbsl) from Demerara Rise (Leg 207, western tropical Atlantic, off Surinam). According to its position, Demerara Rise should have been influenced by the early opening of the Equatorial Atlantic Gateway and the establishment of a bottom-water connection between the central and South Atlantic Oceans during the Late Cretaceous. The investigated benthic foraminiferal faunas demonstrate strong fluctuations in bottom-water oxygenation and organic-matter flux to the sea-floor. The Santonian-earliest Campanian interval is characterised by laminated black shales without benthic foraminifera in the lowermost part, followed by an increasing number of benthic foraminifera. These are indicative of anoxic to dysoxic bottom waters, high organic-matter fluxes and a position within the oxygen minimum zone. At the shallower Site 1259, benthic foraminifera occurred earlier (Santonian) than at the deeper Site 1257 (Early Campanian). This suggests that the shallower site was characterised by fluctuations in the oxygen minimum zone and that a re-oxygenation of the sea-floor started considerably earlier at shallower water-depths. We speculate that this re-oxygenation was related to the ongoing opening of the Equatorial Atlantic Gateway. A condensed glauconitic chalk interval of Early Campanian age (Nannofossil Zone CC18 of Sissingh) overlies the laminated shales at both sites. This interval contains benthic foraminiferal faunas reflecting increasing bottom-water oxygenation and reduced organic-matter flux. This glauconitic chalk is strongly condensed and contains most of the Lower and mid-Campanian. Benthic foraminiferal species indicative of well-oxygenated and more oligotrophic environments characterise the overlying mid- to Upper Campanian nannofossil chalk. During deposition of the nannofossil chalk, a permanent deep-water connection between the central and South Atlantic Oceans is proposed, leading to ventilated and well-oxygenated bottom waters. If this speculation is true, the establishment of a permanent deep-water connection between the central and South Atlantic Oceans terminated Oceanic Anoxic Event 3 "black shale" formation in the central and South Atlantic marginal basins during the Early Campanian (Nannofossil Zone CC18) and led to well-oxygenated bottom waters in the entire Atlantic Ocean during the Late Campanian (at least from Nannofossil Zone CC22 onwards).
Resumo:
The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.
Resumo:
Carbon dioxide and oxygen fluxes were measured in 0.2 m2 enclosures placed at the water sediment interface in the SW lagoon of New Caledonia. Experiments, performed at several stations in a wide range of environments, were carried out both in darkness to estimate respiration and at ambient light, to assess the effects of primary production. The community respiratory quotient (CRQ = CO2 production rate/02 consumption rate) and the community photosynthetic quotient (CPQ= gross O2 production rate/gross CO2 consumption rate) were calculated by functional regressions. The CRQ value, calculated from 61 incubations, was 1.14 (S.E. 0.05) and the CPQ value, obtained from 18 incubations, was 1.03 (S.E. 0.08). The linearity of the relationship between the O2 and the CO2 fluxes suggests that these values are representative for the whole lagoon