4 resultados para transient thermal distortion analysis
em Publishing Network for Geoscientific
Resumo:
Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.
Resumo:
Ever since its discovery, Eocene Thermal Maximum 2 (ETM2; ~53.7 Ma) has been considered as one of the "little brothers" of the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) as it displays similar characteristics including abrupt warming, ocean acidification, and biotic shifts. One of the remaining key questions is what effect these lesser climate perturbations had on ocean circulation and ventilation and, ultimately, biotic disruptions. Here we characterize ETM2 sections of the NE Atlantic (Deep Sea Drilling Project Sites 401 and 550) using multispecies benthic foraminiferal stable isotopes, grain size analysis, XRF core scanning, and carbonate content. The magnitude of the carbon isotope excursion (0.85-1.10 per mil) and bottom water warming (2-2.5°C) during ETM2 seems slightly smaller than in South Atlantic records. The comparison of the lateral d13C gradient between the North and South Atlantic reveals that a transient circulation switch took place during ETM2, a similar pattern as observed for the PETM. New grain size and published faunal data support this hypothesis by indicating a reduction in deepwater current velocity. Following ETM2, we record a distinct intensification of bottom water currents influencing Atlantic carbonate accumulation and biotic communities, while a dramatic and persistent clay reduction hints at a weakening of the regional hydrological cycle. Our findings highlight the similarities and differences between the PETM and ETM2. Moreover, the heterogeneity of hyperthermal expression emphasizes the need to specifically characterize each hyperthermal event and its background conditions to minimalize artifacts in global climate and carbonate burial models for the early Paleogene.
Resumo:
Spatiotemporal patterns of carbonate dissolution provide a critical constraint on carbon input during an ancient (~55.5 Ma) global warming event known as the Paleocene-Eocene thermal maximum (PETM), yet the magnitude of lysocline shoaling in the Southern Ocean is poorly constrained due to limited spatial coverage in the circum-Antarctic region. This shortcoming is partially addressed by comparing patterns of carbonate sedimentation at the Site 690 PETM reference section to those herein reconstructed for nearby Site 689. Biochemostratigraphic correlation of the two records reveals that the first ~36 ka of the carbon isotope excursion (CIE) signaling PETM conditions is captured by the Site 689 section, while the remainder of the CIE interval and nearly all of the CIE recovery are missing due to a coring gap. A relatively expanded stratigraphy and higher carbonate content at mid-bathyal Site 689 indicate that dissolution was less severe than at Site 690. Thus, the bathymetric transect delimited by these two PETM records indicates that the lysocline shoaled above Site 689 (~1,100 m) while the calcite compensation depth remained below Site 690 (~1,900 m) in the Weddell Sea region. The ensuing recovery of carbonate sedimentation conforms to a bathymetric trend best explained by gradual lysocline deepening as negative feedback mechanisms neutralized ocean acidification. Further, biochemostratigraphic evidence indicates the tail end of the CIE recovery interval at both sites has been truncated by a hiatus most likely related to vigorous production and advection of intermediate waters.
Resumo:
Climate phenomena like the monsoon system, El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are interconnected via various feedback mechanisms and control the climate of the Indian Ocean and its surrounding continents on various timescales. The eastern tropical Indian Ocean is a key area for the interplay of these phenomena and for reconstructing their past changes and forcing mechanisms. Here we present records of upper ocean thermal gradient, thermocline temperatures (TT) and relative abundances of planktic foraminifera in core SO 189-39KL taken off western Sumatra (0°47.400' S, 99°54.510' E) for the last 8 ka that we use as proxies for changes in upper ocean structure. The records suggest a deeper thermocline between 8 ka and ca 3 ka compared to the late Holocene. We find a shoaling of the thermocline after 3 ka, most likely indicating an increased occurrence of upwelling during the late Holocene compared to the mid-Holocene which might represent changes in the IOD-like mean state of the Indian Ocean with a more negative IOD-like mean state during the mid-Holocene and a more positive IOD-like mean state during the past 3 ka. This interpretation is supported by a transient Holocene climate model simulation in which an IOD-like mode is identified that involves an insolation-forced long-term trend of increasing anomalous surface easterlies over the equatorial eastern Indian Ocean.