958 resultados para total photosynthetic thermal productivity

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the culmination of the phytoplankton spring bloom in the Fladen Ground area in April-Mai 1976, gross primary production was between 1500 and 2000 mg particulate C m**-2 day**-1, at a crop density (mainly diatoms of the genus Chaetoceros) of about 1500-3500 mg C m**-2. Estimates of the C:chlorophyll a ratio in living cells were much lower than those reported in the literature, possibly because part of what is measured as "chlorophyll a" by the common fluorometric method is associated with particles that are not reported as cells. Most of the dark 14C fixation during the bloom's climax was due to abiotic processes. Excretion of 14C-labeled carbohydrates did not account for a significant fraction of the total photosynthetic rate. The low crop after the bloom period, in June, corresponded with nutrient depletion of the euphotic zone. The low photosynthetic efficiency in June may have been a gross underestimate. The presence of relatively high concentrations of chlorophyll derivatives signifies that the algal crop was consumed by heterotrophs, but at a lower rate in April/May than during the June cruise when particularly high molar ratios of phaeophorbide a and phaeophytin a relative to chlorophyll a were found. The high respiratory rate relative to autotrophic production in June manifested itself also in high dark 14C fixation values. The high concentration of phaeophorbide a in the upper 40 m and its scarcity below this depth during the spring bloom climax in April/May implies that copepod grazing at that time took place principally in the euphotic zone. The remarkably high concentration of chlorophyllide a in the surface layer during the bloom period indicates that the part of the crop that was destroyed by the grazers while eating was occasionally as high as the part that was actually ingested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five-hundred ten meters of Cretaceous sediments were drilled north of the Walvis escarpment in Hole 530A during Leg 75. An immature stage of evolution for organic matter can be assigned to all the samples studied. Black shales are interbedded with red and green claystone in the bottom sedimentary unit, Unit 8, which is of Coniacian to late Albian age. The richest organic carbon contents and petroleum potentials occur in the black shales. Detrital organic matter is present throughout the various members of a sequence, mixed with largely oxidized organic matter in the gray and green claystone or marlstone members on both sides. Detrital organic matter also characterizes the black streaks observed in the claystones. Vertical discontinuities in organic matter distribution are assigned to slumping. Several types of black shales can be identified, according to their content of detrital organic matter, the more detrital black levels corresponding to the Albian-Cenomanian period. Cyclic variations of organic matter observed for a sequence can occur for a set of sequences and even for some consecutive sets of sequences. Climatic factors are proposed to account for the cyclic sedimentation and distribution of organic matter for every sequence that includes a black bed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (delta F/F m') of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador: