9 resultados para torque correlation factor
em Publishing Network for Geoscientific
Resumo:
In order to understand the vertical transport of particulate matter, suspended and settling particles were collected along a meridional transect between 46°N and 35°S and an equatorial longitudinal transect between 135°E and 175°E in the Pacific. The low COrganic/N atomic ratios (<8.2) of suspended particulate organic matter (OM) and good correlation between particulate organic carbon (OC) and chlorophyll-a confirmed that the suspended particulate OM in the surface water was mainly produced by phytoplankton. Only 0.1-3.2% of primary production was transported to 1.3 km water depth in the boreal central Pacific. All data on settling particles (excluding deep trap data) showed strongly positive correlation between total mass and OM fluxes with high correlation factor of 0.93. Biogenic opal-producing plankton, mainly diatoms were responsible for most of the vertical transport of particulate OM in association with higher COrganic/CCarbonate ratios in the subarctic and equatorial hemipelagic regions in the Pacific. This vertical transport of settling particles potentially works as a sink of CO2. In the transition zone during the May 1993, large difference between PCO2 (<300 µatm) in the surface water and pCO2 (340 µatm) in the atmosphere was actually due to enhanced particulate OM flux. Since the deep water of the Pacific is enriched in CO2 and nutrients, upwelled seawater may tend to release CO2 to the atmosphere. However, higher production of particulate matter could reduce the partial pressure of CO2 in the surface water. Also terrestrial nutrients' inputs in the western equatorial Pacific have potential for the reduction of CO2 in the surface water.
Resumo:
Quaternary sediments were recovered at all four Sites at Leg 72. Planktonic foraminifers were abundant and well preserved, especially in the holes shielded from Antarctic Bottom Water (AABW) influence. The fauna belonged to the subtropical province marked by Globigerinoides ruber and to a lesser extent by Globorotalia inflata. Thirty planktonic foraminiferal species were distinguished, and a detailed study of the Site 517 stratigraphy was made. The Quaternary sequence of the Rio Grande Rise was subdivided slightly differently from the Bolli and Premoli Suva (1973) pattern. Five subzones were identified but some difficulties arose when a precise correlation became necessary in the subzones of the tropical provinces. Correlations could nevertheless be made, particularly with respect to the earliest Quaternary. Quaternary faunal data have been dated by isotopic stratigraphy (Vergnaud Grazzini et al.,1983) and partially contradict results previously published for this part of the Atlantic (Williams and Ledbetter, 1979). By studying the occurrence of planktonic foraminifers, we obtained more information about hydrologic variations during the Quaternary sequence of Hole 517; two broad periods were recognized. Finally, we identified the interaction between the Brazil Current and the subtropical convergence