47 resultados para top-seed solution growth

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buried nodules from siliceous sediments in the central Indian Basin are morphologically variable and mineralogically consist of d-MnO2 and incipient todorokite. Compositionally they are weakly diagenetic. The sediment coarse fractions (>63 µm) at different depths show variable abundances of micronodules, volcanic glass shards and biodebris. Dissolution of biodebris increases and abundance of micronodules decreases with increasing depth. Enrichment in Mn, Fe, Cu, Ni, Co, together with a decrease in organic carbon in the sediment column, may result from diagenetic metal remobilization. Diagenetically remobilized trace metals might have been utilized for the growth of micronodules over the buried nodules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standing stocks and production rates for phytoplankton and heterotrophic bacteria were examined during four expeditions in the western Arctic Ocean (Chukchi Sea and Canada Basin) in the spring and summer of 2002 and 2004. Rates of primary production (PP) and bacterial production (BP) were higher in the summer than in spring and in shelf waters than in the basin. Most surprisingly, PP was 3-fold higher in 2004 than in 2002; ice-corrected rates were 1581 and 458 mg C/m**2/d respectively, for the entire region. The difference between years was mainly due to low ice coverage in the summer of 2004. The spatial and temporal variation in PP led to comparable variation in BP. Although temperature explained as much variability in BP as did PP or phytoplankton biomass, there was no relationship between temperature and bacterial growth rates above about 0°C. The average ratio of BP to PP was 0.06 and 0.79 when ice-corrected PP rates were greater than and less than 100 mg C/m**2/d, respectively; the overall average was 0.34. Bacteria accounted for a highly variable fraction of total respiration, from 3% to over 60% with a mean of 25%. Likewise, the fraction of PP consumed by bacterial respiration, when calculated from growth efficiency (average of 6.9%) and BP estimates, varied greatly over time and space (7% to >500%). The apparent uncoupling between respiration and PP has several implications for carbon export and storage in the western Arctic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dates and growth rates of iron-manganese nodules obtained by various direct and indirect methods, including radiometric, micropaleontological, geological and experimental, are discussed. Validity of assumptions, on which the radiometric dating of nodules is based and reliability of results are discussed. The problem of "buoyancy" of slow-growing nodules resting on the surface of faster-accumulating sediments is considered: It may be caused by action of deep-water fauna, bottom currents, or plastic properties of sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved organic carbon in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved organic carbon concentration by a high TOC elemental analyzer (Elementar Analysensysteme GmbH, Hanau, Germany). Samples were analyzed as soon as possible and stored at 4°C if necessary. Often in summer, no free soil solution was available for collection, especially in the upper soil layers. Annual mean values of measured biweekly concentrations of dissolved organic carbon are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2006 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2006 in spring. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2003 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2003 at the 07.03.2003; 24.03.2003; 07.04.2003; 22.04.2003; 07.05.2003; 20.05.2003; 03.06.2003; 28.07.2003; 12.09.2003; 22.09.2003; 07.10.2003; and 21.10.2003, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2004 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2004 at the 15.01.2004; 30.01.2004; 12.02.2004; 27.02.2004; 09.03.2004; 25.03.2004; 21.04.2004; 07.05.2004; and 24.05.2004, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (for samples collected until spring 2004: CFA SAN++, Skalar [Breda, The Netherlands]; for samples collected later: CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar) and 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of dissolved nitrogen (total dissolved nitrogen: TDN, dissolved organic nitrogen: DON, dissolved ammonium: NH4+, and dissolved nitrate: NO3-) in samples of soil water collected from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In April 2002 glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-) and ammonium (NH4+) concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+). In 5% of the samples, TDN was equal to or smaller than mineral N. In these cases, DON was assumed to be zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2004 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2004 in spring, fall, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (for samples collected until spring 2004: CFA SAN++, Skalar [Breda, The Netherlands]; for samples collected later: CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar) and 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fucus vesiculosus L. (Phaeophyceae) is the most abundant and hence ecologically most important primary producer, carbon sink and habitat provider in the western Baltic Sea. All F. vesiculosus L. specimens were collected on 23 April 2014 from a depth of 0.2-1 m in the non-tidal Kiel Fjord, western Baltic Sea (54°27'N; 10°12'E), where this species forms dense and almost monospecific stands on stones. After sampling the algal thalli were stored in a refrigerator box with water from the sampling site, transported to Bremerhaven and stored at 10 °C for one day in filtered seawater. Experiments were conducted with vegetative apical tips (6.7±0.5 cm length), the actively growing region of F. vesiculosus, which were randomly selected and cut from 144 different individuals prior to the experiments. These tips were acclimated to laboratory conditions for three days in filtered seawater at 10 °C before the start of the experiment. Furthermore, 30 additional vegetative apices were freeze-dried to document the initial biochemical status of F. vesiculosus in its native habitat. A temperature gradient was installed in a walk-in constant cooling chamber (15 °C) in nine water baths (5, 10, 15, 20, 24, 26, 27, 28 and 29 °C ± 0.1 °C) which were tempered by thermostats (5, 10 and 15 °C: Huber Variostat CC + Pilot ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany; 20 and 28 °C: Haake DC3, Thermo Fisher Scientific Inc., Waltham, USA; 24, 26, 27 and 29 °C: Haake DC10). Every temperature treatment consisted of four 2 L glass beakers (n = 4). In each beaker four F. vesiculosus apices were grown in 2 µm-filtered North Sea water diluted with demineralized water in a ratio of 1:1 and enriched with nutrients after Provasoli (1968; 1/10 enrichment), leading to a salinity of about 15.6 which equaled habitat conditions. The algae were exposed to an irradiance of 130 µmol photons m-2 s-1 ±10 % (Powerstar HGI-TS 150 W, OSRAM GmbH, Bad Homburg, Germany) measured at the top of the beaker under a 16:8 h L:D cycle. The media in the beakers was changed every third or fourth day and aerated with artificial air containing 380 ppm CO2 (gas mixing device; HTK Hamburg GmbH, Hamburg, Germany). Before the experiment, the algae were acclimated to the final temperatures in steps of 5 °C for 2 days each, beginning at 10 °C. After 21 days exposure time, three out of four samples per replicate were freeze-dried for further biochemical analyses, and afterwards the thermostats were turned off to reduce the temperature to 16±0.4 °C for another 10 days permitting growth under post-culture conditions.