194 resultados para the Yangtze River

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phylogeny, abundance, and biogeography of the NOR5/OM60 clade was investigated. This clade includes "Congregibacter litoralis" strain KT71, the first cultured representative of marine aerobic anoxygenic phototrophic Gammaproteobacteria. Most of the NOR5/OM60 sequences were retrieved from marine coastal settings, whereas there were fewer from open-ocean surface waters, deep-sea sediment, freshwater, saline lakes and soil. The abundance of members of the NOR5/OM60 clade in various marine sites was determined by fluorescence in situ hybridization using a newly designed and optimized probe set. Relative abundances in coastal marine waters off the Yangtze estuary were up to 3% of the total 4',6-diamidino-2-phenylindole (DAPI) counts. A small cruise was undertaken from 2006-09-06 to 2006-09-08 in the Yangtze River estuary. Samples were taken from surface water, and immediately fixed with 1% paraformaldehyde (PFA) for 1 h, filtered onto polycarbonate filters (Millipore, 47 mm in diameter, 0.2 µm pore size) and stored frozen at -20 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yangtze River Basin downstream of China's Three Gorges Dam (TGD) (thereafter referred to as "downstream" basin) hosts the largest cluster of freshwater lakes in East Asia. These lakes are crucial water stocks to local biophysical environments and socioeconomic development. Existing studies document that individual lakes in this region have recently experienced dramatic changes under the context of enduring meteorological drought, continuous population growth, and extensive water regulation since TGD's initial impoundment (i.e., June, 2003). However, spatial and temporal patterns of lake dynamics across the complete downstream Yangtze basin remain poorly characterized. Using daily MODIS imagery and an advanced thematic mapping scheme, this study presents a comprehensive monitoring of area dynamics in the downstream lake system at a 10-day temporal resolution during 2000-2011. The studied lakes constitute ~76% (~11,400 km**2) of the total downstream lake area, including the entire +70 major lakes larger than 20 km**2. The results reveal a decadal net decline in lake inundation area across the downstream Yangtze Basin, with a cumulative decrease of 849 km**2 or 7.4% from 2000 to 2011. Despite an excessive precipitation anomaly in the year 2010, the decreasing trend was tested significant in all seasons. The most substantial decrease in the post-TGD period appears in fall (1.1%/yr), which intriguingly coincides with the TGD water storage season. Regional lake dynamics exhibit contrasting spatial patterns, manifested as evident decrease and increase of aggregated lake areas respectively within and beyond the Yangtze Plain. This contrast suggests a marked vulnerability of lakes in the Yangtze Plain, to not only local meteorological variability but also intensified human water regulations from both the upstream Yangtze main stem (e.g., the TGD) and tributaries (e.g., lakes/reservoirs beyond the Yangtze Plain). The produced lake mapping result and derived lake area dynamics across the downstream Yangtze Basin provides a crucial monitoring basis for continuous investigations of changing mechanisms in the Yangtze lake system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.