4 resultados para temper outbursts

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

yResults of 13 field investigations between 1966 and 1990 of the southwestern to eastern margin of Kötlujökull and its proglacial area are summarized with respect to sandar and their formation. Generally, the results are based on sedimentological examinations in the field and laboratory, on analyses of aerial photographs, and investigations of the glacier slope. The methods permitted a more detailed reconstruction of sandar evolution in the proglacial area of Kötlujökull since 1945, of tendencies in development and of single data going back until the last decades of the 19th century. Accordingly, there existed special periods of "flachsander"-formations with raised coarsegrained "sanderwurzels" resultant from the outbreak of subglacial meltwater tunneloutlets and other periods with "hochsander-"formations by supraglacial drainage. At present the belts of hochsanders in front of the glacier come up to more than 4 m in thickness and 1000 m in width, therefore containing perhaps more sediment direct in front of Kötlujökull than the old belts of flachsanderwurzels. In one case the explosion-like subglacial meltwater outburst combined with the genesis of a sanderwurzel could be observed for a time and is thoroughly discussed. The event is referred to the outburst of a sub- to inglacial meltwater body being under extreme hydrostatic press ures which is combined with the genesis of a new subglacial tunneloutlet as a new flachsander. Often these outbursts led to the destruction of a morainic belt more than 1000 m in width. Presumably the whole event was finished in not more than a few days. In addition to a characteristic pear-shaped form and water-moved stones up to diameters of 1 m the wurzels possess a single "main-channel" with rectangular cross-sections as far as 4 m deep and 50 m wide just as small flat channels resembling fish bones in connection with the main channel. Presumably, they have been active only in the last stage of wurzel formation. With regard to the subglacial tunnel gates long-living L-meltwater outlets are distinguished from short-living K-meltwater outlets. These are always combined with a raised coarse-grained sanderwurzel, but its meltwater discharge is generally decreasing and ceases after some years, whereas the discharge of L-meltwater outlets continues unchanged for long times (except seasonal differences). The material of flachsanders is preponderantly composed of mugearitic and andesitic cobble extending at least for some kilometres from the glacier margin, whereas the hochsanders correspond to medium to coarse sands without clay and without alternations into the direction of flow. The hochsander fans are covered with small braidet channels. Their sedimentary structures are determined by the short time changing of supraglacial meltwater discharge and the upper flow regime combined with the development of antidunes, which rule the channel-flows during the main activity periods in summer. Unlike the subglacial drainage the supraglacial drainage led to only weak effects of erosion on the glacier foreland. So the hochsanders refilled depressions of morainic areas or grew up on older flachsanderwurzels. Whereas all large flachsanders developed in front of approximate stationary glacier margins, the evolution of coherent belts of hochsanders were combined with progressive glacier fronts. On the other hand, there was obviously no evolution at all of large sandar in front of back-melting margins of Kötlujökull. Based on examinations of the glacier surface and on analyses of aerial photographs the different types of sandar are referred to different structures of the glacier snout. Finally chances of surviving of sandar in the proglacial area of Kötlujökull are shortly discussed just as the possibility of an application of the Islandic research results on Pleistocene sandar in northern Germany.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During most of the vegetation season from late May to early September large-sized diatom alga Proboscia alata forms local patches with high abundances and biomasses in different oceanographic domains of the eastern Bering Sea shelf. For 0-25 m layer average abundance and biomass of species in these patches are 700000 cells/l and 5 g/m**3 (wet weight), while corresponding estimates for the layer of maximal species concentrations are 40000000 cells/l and 38 g/m**3 (wet weight) or 1.6 g C/m**3. These levels of abundance and biomass are typical for the spring diatom bloom in the region. Outbursts of P. alata mass development are important for the carbon cycle in the pelagic zone of the shelf area in the summer season. The paradox of P. alata summertime blooms over the middle shelf lies in their occurrences against the background of the sharp seasonal pycnocline and deficiency in nutrients in the upper mixed layer. Duration of the outbursts in P. alata development is about two weeks and size of patches with high abundances can be as large as 200 km across. Degradation of the P. alata summertime outbursts may occur during 4-5 days. Rapid sinking of cells through the seasonal pycnocline results in intense transport of organic matter to bottom sediments. One of possible factors responsible for rapid degradation of the blooms is affect on the population by ectoparasitic flagellates. At terminal stages of the P. alata blooms percentage of infected cells can reach 70-99%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reconstruction of Milankovitch to millennial-scale variability of sea-surface temperature (SST) and sea-surface productivity in the Pleistocene mid-latitude North Atlantic Ocean (MIS 16-9) and its relationship to ice sheet instability was carried out on sediments from IODP Site U1313. This reconstruction is based on alkenone and n-alkane concentrations, Uk37' index, total organic carbon (TOC) and carbonate contents, X-Ray diffraction (XRD) data, magnetic susceptibility, and accumulation rates. Increased input of ice-rafted debris (IRD) occurred during MIS 16, 12, and 10, characterized by high concentrations of dolomite, quartz, and feldspars and elevated accumulation rates of terrigenous matter. Minimum input values of terrigenous matter, on the other hand, were determined for MIS 13 and 11. Peak values of dolomite, coinciding with quartz, plagioclase, and kalifeldspar peaks and maxima in long-chain n-alkanes indicative for land plants, are interpreted as Heinrich-like Events related to sudden instability of the Laurentide Ice Sheet during early and late (deglacial) phases of the glacials. The coincidence of increased TOC values with elevated absolute concentrations of alkenones suggest increased glacial productivity, probably due to a more southern position of the Polar Front. Alkenone-based SST reached absolute maxima of about 19°C during MIS 11.3 and absolute minima of <10°C during MIS 12 and 10. Within MIS 11, prominent cooling events (MIS 11.22 and 11.24) occurred. The absolute SST minima recorded directly before and after the glacial maxima MIS 10.2 and 12.2, are related to Heinrich-like Event meltwater pulses, as supported by the coincidence of SST minima and maxima in C37:4 alkenones and dolomite. These sudden meltwater pulses - especially during Terminations IV and V - probably caused a collapse of phytoplankton productivity as indicated by the distinct drop in alkenone concentrations. Ice-sheet disintegration and subsequent surges and outbursts of icebergs and meltwater discharge may have been triggered by increased insolation in the Northern High Latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO2 world.