172 resultados para tectonic

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive high-grade polydeformed metamorphic provinces surrounding Archaean cratonic nuclei in the East Antarctic Shield record two tectono-thermal episodes in late Mesoproterozoic and late Neoproterozoic-Cambrian times. In Western Dronning Maud Land, the high-grade Mesoproterozoic Maud Belt is juxtaposed against the Archaean Grunehogna Province and has traditionally been interpreted as a Grenvillian mobile belt that was thermally overprinted during the Early Palaeozoic. Integration of new U-Pb sensitive high-resolution ion microprobe and conventional single zircon and monazite age data, and Ar-Ar data on hornblende and biotite, with thermobarometric calculations on rocks from the H.U. Sverdrupfjella, northern Maud Belt, resulted in a more complex P-T-t evolution than previously assumed. A c. 540?Ma monazite, hosted by an upper ampibolite-facies mineral assemblage defining a regionally dominant top-to-NW shear fabric, provides strong evidence for the penetrative deformation in the area being of Pan-African age and not of Grenvillian age as previously reported. Relics of an eclogite-facies garnet-omphacite assemblage within strain-protected mafic boudins indicate that the peak metamorphic conditions recorded by most rocks in the area (T = 687-758°C, P = 9·4-11·3?kbar) were attained subsequent to decompression from P > 12·9?kbar. By analogy with limited U-Pb single zircon age data and on circumstantial textural grounds, this earlier eclogite-facies metamorphism is ascribed to subduction and accretion around 565?Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions is ascribed to the intrusion of post-orogenic granite at c. 480?Ma. The recognition of extensive Pan-African tectonism in the Maud Belt casts doubts on previous Rodinia reconstructions, in which this belt takes a pivotal position between East Antarctica, the Kalahari Craton and Laurentia. Evidence of late Mesoproterozoic high-grade metamorphism during the formation of the Maud Belt exists in the form of c. 1035?Ma zircon overgrowths that are probably related to relics of granulite-facies metamorphism recorded from other parts of the Maud Belt. The polymetamorphic rocks are largely derived from a c. 1140?Ma volcanic arc and 1072 ± 10?Ma granite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex P-T-t path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise P-T-t path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709-785 °C and P = 7.0-9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a). The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent-continent collision at the end of the Mesoproterozoic (M1; 1090-1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paleomagnetic measurements were performed on 106 basalt samples collected from Holes 747C, 748C, 749C, and 750B. Basalt samples were recovered from the southern portion of the Kerguelen Plateau and the transitional zone between the northern and southern plateau in the south central Indian Ocean. The ages of basalts range from 100 to 115 Ma. In addition to the preliminary shipboard measurements (Schlich, Wise, et al., 1989, doi:10.2973/odp.proc.ir.120.1989), characteristic inclinations of the magnetization were obtained using mainly stepwise thermal demagnetization of the samples. Reliable paleomagnetic results were obtained from three sites (Sites 747, 748, and 749). The paleomagnetic inclinations of Sites 747, 748, and 749 are -51°, -63°, and -62°, respectively. The considerable differences between the paleomagnetic and present inclinations of about 70° at Sites 747, 748, and 749 indicate that displacement in the direction of the geomagnetic meridian has taken place since formation of the basalt. Shallower paleomagnetic inclinations than the present inclinations at each site imply a southward movement of the sites with respect to the geomagnetic pole. By comparing the apparent polar wander path of Antarctica with the virtual geomagnetic pole (VGP) of the Southern Kerguelen Plateau, we have concluded that no major tectonic movement has taken place between the Kerguelen Plateau and Antarctica since formation of the basalt (i.e., 100-115 Ma). The angular dispersion of the VGP for the Kerguelen Plateau is calculated as 17°.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cenozoic Victoria Land Basin (VLB) stratigraphic section penetrated by CRP-3 is mostly of Early Oligocene age. It contains an array of lithofacies comprising fine-grained mudrocks, interlaminated and interbedded mudrocks/sandstones, mud-rich and mud-poor sandstones, conglomerates and diamctites that are together interpreted as the products of shallow marine to possibly non-marine environments of deposition, affected by the periodic advance and retreat of tidewater glaciers. This lithofacies assemblage can be readily rationalised using the facies scheme designed originally for CRP-2/2A, and published previously. The uppermost 330 metres below sea floor (mbsf) shows a cyclical arrangement of lithofacies also similar to that recognised throughout CRP-2/2A, and interpreted to reflect cyclical variations in relative sea-level driven by ice volume fluctuations ('Motif A'). Between 330 and 480 mbsf, a series of less clearly cyclical units, generally fining-upward but nonetheless incorporating a significant subset of the facies assemblage, has been identified and noted in the Initial Report as 'Motif B' Below 480 mbsf, the section is arranged into a repetitive succession of fining-upward units, each of which comprises dolerite clast conglomerate at the base passing upward into relatively thick intervals of sandstones. The cycles present down 480 mbsf are defined as sequences, each interpreted to record cyclical variation of relative sea-level. The thickness distribution of sequences in CRP-3 provides some insights into the geological variables controlling sediment accumulation in the Early Oligocene section. The uppermost part of the section in CRP-3 comprises two or three thick, complete sequences that show a broadly symmetrical arrangement of lithofacies (similar to Sequences 9-11 in CRP-2/2A). This suggests a period of relatively rapid tectonic subsidence, which allowed preservation of the complete facies cycle. Below Sequence 3, however, is a considerable interval of thin, incomplete and erosionally truncated sequences (4-23), which incorporates both the remainder of Motif A sequences and all Motif B sequences recognised. The thinner and more truncated sequences suggest sediment accumulation under conditions of reduced accommodation, and given the lack of evidence for glacial conditions (see Powell et al., this volume) tends to argue for a period of reduced tectonic subsidence. The section below 480 mbsf consists of a series of fining-upward, conglomerate to sandstone intervals which cannot be readily interpreted in terms of relative sea-level change. A relatively mudrock-rich interval above the basal conglomerate/breccia (782-762 mbsf) may record initial flooding of the basin during early rift subsidence. The lithostratigraphy summarised above has been linked to seismic reflection data using depth conversion techniques (Henrys et al., this volume). The three uppermost reflectors ('o', 'p' and 'q') correlate to the package of thick sequences 1-3, and several deeper reflectors can also be correlated to sequence boundaries. The package of thick Sequences 1-3 shows a sheet-like cross-sectional geometry on seismic reflection lines, unlike the similar package recognised in CRP-2/2A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cape Roberts drillhole CRP-3 in the northern part of McMurdo Sound (Ross Sea, Antarctica) targeted the western margin of the Victoria Land basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs (Cape Roberts Science Team, 2000). The CRP-3 drillhole extended to 939.42 mbsf (meters below seafloor) at a water depth of 297 m. The first downhole measurements after drilling were the temperature and salinity logs. Both were measured at the beginning and at the end of each of the three logging phases. Although an equilibrium temperature state may not have been fully reached after drilling, the temperature and salinity profiles seem to be scarcely disturbed. The average overall temperature gradient calculated from all temperature measurements is 28.5 K/km; remarkably lower than the temperature gradients found in other boreholes in the western Ross See and the Transantarctic Mountains. Anomalies in the salinity profiles at the beginning of each logging phase were no longer present at the end of the corresponding logging phase. This pattern indicates that drilling mud invaded the formation during drilling operations and flowed back into the borehole after drilling ceased. Thus, zones of temperature and salinity anomalies identify permeable zones in the formation and may be pathways for fluid flow. Radiogenic heat production, calculated from the radionuclide contents, is relatively low, with average values between 0.5 and 1.0 pW/m3. The highest values (up to 2 µW/m3) were obtained for the lower part of the Beacon Sandstone below 855 mbsf. The heat flow component due to radiogenic heat production integrated over the entire borehole is 0.7 mW/m2. Thermal conductivities range from 1.3 to 3 W/mK with an average value of 2.1 W/mK over the Tertiary section. Together with the average temperature gradient of 28.5 K/km this yields an average heat flow value of 60 mW/m2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sarcya 1 dive explored a previously unknown 12 My old submerged volcano, labelled Cornacya. A well developed fracturation is characterised by the following directions: N 170 to N-S, N 20 to N 40, N 90 to N 120, N 50 to N 70, which corresponds to the fracturation pattern of the Sardinian margin. The sampled lavas exhibit features of shoshonitic suites of intermediate composition and include amphibole-and mica-bearing lamprophyric xenoliths which are geochemically similar to Ti-poor lamproites. Mica compositions reflect chemical exchanges between the lamprophyre and its shoshonitic host rock suggesting their simultaneous emplacement. Nd compositions of the Cornacya K-rich suite indicate that continental crust was largely involved in the genesis of these rocks. The spatial association of the lamprophyre with the shoshonitic rocks is geochemically similar to K-rich and TiO2-poor igneous suites, emplaced in post-collisional settings. Among shoshonitic rocks, sample SAR 1-01 has been dated at 12.6±0.3 My using the 40Ar/39Ar method with a laser microprobe on single grains. The age of the Cornacya shoshonitic suite is similar to that of the Sisco lamprophyre from Corsica, which similarly is located on the western margin of the Tyrrhenian Sea. Thus, the Cornacya shoshonitic rocks and their lamprophyric xenolith and the Sisco lamprophyre could represent post-collisional suites emplaced during the lithospheric extension of the Corsica-Sardinia block, just after its rotation and before the Tyrrhenian sea opening. Drilling on the Sardinia margin (ODP Leg 107) shows that the upper levels of the present day margin (Hole 654) suffered tectonic subsidence before the lower part (Hole 652). The structure of this lower part is interpreted as the result of an eastward migration of the extension during Late Miocene and Early Pliocene times. Data of Cornacya volcano are in good agreement with this model and provide good chronological constraints for the beginning of the phenomenon.