13 resultados para system biology
em Publishing Network for Geoscientific
Resumo:
Abundance data of copepods were derived from vertical Multinet hauls at 10 stations, carried out in the northern Benguela upwelling system in December 2009 (FRS Africana) and September/October 2010 (RRS Discovery). Three transects along ~ 17°S, 19°S and 23°S with three stations each (neritic, shelf break, oceanic) and one station at 21°S were analysed for copepod abundance. Maximum sampling depth was either close to the seafloor (neritic and shelf break stations) or 700 m (2009) and 1000 m (2010) for the oceanic stations. Calanoid copepod species and stages were identified and enumerated separately. Adult females, males and copepodite stage 5 (C5) (in case of C. carinatus and N. minor) were included in the abundance calculations. Abundance is expressed as number of individuals per m**3, calculated from the volume of water filtered (calibrated flowmeter, Hydro-Bios) and the maximum sampling depth at each station.
Resumo:
Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.
Resumo:
Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Copepod species were sampled by different net types. Immediately after the hauls, samples were sorted to species and stages (16 species; females, males and C5 copepodids) according to Bradford-Grieve et al. (1999). Specimens were kept in temperature-controlled refrigerators for at least 12 h before they were used in experiments. Respiration rates of different copepod species were measured onboard by optode respirometry (for details see Köster et al., 2008) with a 10-channel optode respirometer (PreSens Precision Sensing Oxy-10 Mini, Regensburg, Germany) under simulated in situ conditions in temperature-controlled refrigerators. Experiments were run in gas-tight glass bottles (12-13 ml). For each set of experiments, two controls without animals were measured under exactly the same conditions to compensate for potential bias. The number of animals per bottle depended on the copepods size, stage and metabolic activity. Animals were not fed during the experiments but they showed natural species-specific movements. Immediately after the experiments, all specimens were deep-frozen at - 80 °C for later dry mass determination (after lyophilisation for 48 h) in the home lab. The carbon content (% of dry mass) of each species was measured by mass-spectrometry in association with stable isotope analysis and body dry mass was converted to units of carbon. For species without available carbon data, the mean value of all copepod species (44% dry mass) was applied. For the estimation of carbon requirements of copepod species, individual oxygen consumption rates were converted to carbon units, assuming that the expiration of 1 ml oxygen mobilises 0.44 mg of organic carbon by using a respiratory quotient (RQ) of 0.82 for a mixed diet consisting of proteins (RQ = 0.8-1.0), lipids (RQ = 0.7) and carbohydrates (RQ = 1.0) (Auel and Werner, 2003). The carbon ingestion rates were calculated using the energy budget and the potential maximum ingestion rate approach. To allow for physiological comparisons of respiration rates of deep- and shallow-living copepod species without the effects of ambient temperature and different individual body mass, individual respiration rates were temperature- (15°C, Q10=2) and size-adjusted. The scaling coefficient of 0.76 (R2=0.556) is used for the standardisation of body dry mass to 0.3 mg (mean dry mass of all analysed copepods), applying the allometric equation R= (R15°C/M0.76)×0.30.76, where R is respiration and M is individual dry mass in mg.
Resumo:
Respiration rates of 16 calanoid copepod species from the northern Benguela upwelling system were measured on board RRS Discovery in September/October 2010 to determine their energy requirements and assess their significance in the carbon cycle. Individual respiration rates were standardised to a mean copepod body mass and a temperature regime typical of the northern Benguela Current. These adjusted respiration rates revealed two different activity levels (active and resting) in copepodids C5 of Calanoides carinatus and females of Rhincalanus nasutus, which reduced their metabolism during dormancy by 82% and 62%, respectively. An allometric function (Imax) and an energy budget approach were performed to calculate ingestion rates. Imax generally overestimated the ingestion rates derived from the energy budget approach by >75%. We suggest that the energy budget approach is the more reliable approximation with a total calanoid copepod (mainly females) consumption of 78 mg C m-2 d-1 in neritic regions and 21 mg C m-2 d-1 in oceanic regions. The two primarily herbivorous copepods C. carinatus (neritic) and Nannocalanus minor (oceanic) contributed 83% and 5%, respectively, to total consumption by calanoid copepods. Locally, C. carinatus can remove up to 90% of the diatom biomass daily. In contrast, the maximum daily removal of dinoflagellate biomass by N. minor was 9%. These estimates imply that C. carinatus is an important primary consumers in the neritic province of the northern Benguela system, while N. minor has little grazing impact on phytoplankton populations further offshore. Data on energy requirements and total consumption rates of dominant calanoid copepods of this study are essential for the development of realistic carbon budgets and food-web models for the northern Benguela upwelling system.
Resumo:
Analysis of the reproductive system of female vampire squid to determine reproductive strategy and fecundity of vampire squid, accessioned in the Santa Barbara Museum of Natural History and collected in 60, 70s from off southern California.
Resumo:
The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data publication provides permanent links to original and updated versions of validated data files containing measurements from the Continuous Surface Sampling System [CSSS]. Water was pumped at the front of the vessel from ~2m depth, then de-bubbled and circulated to a WETLabs AC-S spectrophotometer and a WETLabs chlorophyll fluorometer. Systems maintenance (instrument cleaning, flushing) was done approximately once a week and in port between successive legs. All data were stamped with a GPS.