3 resultados para sympatry

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations at a Late Weichselian freshwater basin in northwestern Jutland, Denmark, yielded a fairly rich assemblage of vertebrate remains, mostly bones and teeth of small mammals. The remains are primarily allochthonous and the bones have been subjected to different taphonomic pathways and agents. AMS 14C-dates on terrestrial organic remains provided ages of Middle to Late Allerød time. Identifications revealed the first fossil record in Scandinavia of Rana arvalis, Sorex minutus, Ochotona cf. pusilla, Microtus gregalis, Microtus oeconomus, and Sicista cf. betulinu. Spermophilus cf. major and Desmana moschata, previously found only once and twice respectively, were retrieved, and Sorex araneus and Arvicola terrestris were recovered for the first time beyond the Atlantic chronozone. Ecologically, the Nørre Lyngby small mammal fauna can be characterized by its very high and almost equal proportions of boreal forest and steppe elements followed by a relatively high proportion of tundra elements. The fossil species share a modern area of sympatry north of the Caspian Sea from the river Volga in the west to the southern and western slopes of the Urals. If, however, the large Allerød mammals are added, the fauna is without modern analogues. The Nørre Lyngby fauna can be seen as a last expansion of the North European glacial fauna. Provided that an absolute chronology and a differentiated sea-level curve for the area can be established, the Nørre Lyngby fauna could become important for studies in mammalian dispersal and migration rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and I. variabilis, which live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish 1.) the genetic structure, connectivity, and signs of bottlenecks across the populations of I. fasciculata, and 2.) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front, and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations, which might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).