10 resultados para supply chain vs. supply chain competion
em Publishing Network for Geoscientific
Resumo:
During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.
Resumo:
Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but also revealed uncertainties about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors like sea surface temperature (SST), salinity and nutrient concentrations. Previous cultivation efforts indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified in the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices in surface sediments show no relationship with annual mean SST of the overlying water. It remains unknown what determines the DSI, although our data suggests that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions of algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have previously been applied as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.
Resumo:
Sediment samples from the Laptev Sea, taken during the 1993 RV Polarstern expedition ARK IX/4 and the RV Ivan Kireyev expedition TRANSDRIFT I, were investigated for the amount and composition of their organic carbon fractions. Of major interest was the identification of different processes controlling organic carbon deposition (i.e. terrigenous supply vs. surface water productivity). Long-chain unsaturated alkenones derived from prymnesiophytes, and fatty acids derived from diatoms and dinoflagellates, were analysed by means of gas chromatography and mass spectrometry. First results on the distribution of these biomarkers in surface sediments indicate that the surface water productivity signal is well preserved in the sediment data. This is shown by the distribution of the 16:1(n-7) and 20:5(n-3) fatty acids indicative for diatoms, and the excellent correlation with the chlorophyll a concentrations in the surface water masses and the biogenic-opal content and increased hydrogen indices of the sediments. The high concentration of these unsaturated fatty acids in shallow water sediments shows the recent deposition of the organic material. In deep-sea sediments, on the other hand, the concentrations are low. This decreased content is typical for phytoplankton material which has been degraded by microorganisms or autoxidation. In general, the alkenone concentrations are very low, suggesting low production rates by prymnesiophytes. Only at one station from the lower continental margin influenced by the inflow of Atlantic water masses, were some higher amounts of alkenones determined. Long-chain n-alkanes as well as high C/N ratios and low hydrogen indices indicate the importance of (fluvial) supply of terrigenous organic matter.
Resumo:
Two main mechanisms are controlling the accumulation of organic matter in the sediments of the Kara Sea. The large rivers Ob and Yenisei supply significant quantities of freshwater onto the shelf (Lisitsyn and Vinogradov, 1995; Bobrovitskaya et al., 1996; Johnson et al., 1997) and deliver terrigenous organie matter and aquatic algae. Additionally, marine organic matter is produced in the water column. In order to distinguish between the different sources of the organic material maceral analysis, organic-geochemical bulk Parameters and biomarkers (short- and long-chain D-alkanes, fatty acids and pigments) were used to determine the quality (marine vs. terrigenous) and quantity of the organic carbon fraction in the surface sediments taken during the 28th cruise of RV Akademik Boris Petrov (Matthiessen and Stepanets, 1998) (Fig. 1). Previous organic-geochemical investigations (i.e., total organic-carbon content (TOC), hydrogen indices (Hl), CIN-ratios) indicate the importance of terrigenous input of organic matter (Galimov et al., 1996; Stein, 1996). Studies of lipid biomarkers in surface sediments in the Ob estuary show also a predominance of terrestrial constituents and an increase in planktonogenic and bacterial lipids further offshore (Belyaeva and Eglinton, 1997). In complex systems such as the Eurasian continental margin characterized by high input of terrestriallaquatic organic matter and strong seasonal variation in sea-ice Cover and primary productivity, the Interpretation of the organic geochemical data is much more complicated and restricted in comparison to similar data Sets from low-latitude open-ocean environments (Fahl and Stein, 1998). Microscopical studies (maceral analysisl palynology), however, allow a direct visual inspection of the particulate organic matter and allow to differentiate particles of different biological sources. Thus, a combination of both methods as shown in this study, yields a more precise identification of organic-carbon sources.
Resumo:
In order to understand the processes controlling organic carbon deposition (i.e., primary productivity vs. terrigenous supply) and their paleoceanographic significance, three sediment cores (PS2471, PS2474. and PS2476) from the Laptev Sea continental margin were investigated for their content and composition of organic carbon. The characterization of organic matter indudes the determination of buk parameters (hydrogen index values and C/N ratios) and the analysis of specific biomarkers (n-alaknes, fatty acids, alkenones, and pigments). Total organic carbon (TOC) values vary between 0.3 and 2%. In general, the organic matter from the Laptev Sea continental margin is dominated by terrigenous matter throughout. However. significant amounts of marine organic carbon occur. The turbidites, according to a still preliminary stratigraphy probably deposited during glacial Oxygen Isotope Stages 2 and 4, are characterized by maximum amounts of organic carbon of terrigenous origin. Marine organic carbon appears to show enhanced relative abundances in the Termination I (?) and early Holocene time intervals, as indicated by maximum amounts of short chain n-alkanes, short-chain fatty acids, and alkenones. The increased amounts of faity acids, however, may also have a freshwater origin due to increased river discharge at that time. The occurrence of alkenones is suggested to indicate an intensification of Atlantic water inflow along the Eurasian continental margin starting at that time. Oxygen Isotope Stage l accumutation rates of total organic carhon are 0.3, 0.17, and 0.02 C/cm**2/ky in cores PS2476, PS2474, and PS2471, respectively.
Resumo:
Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900 to 3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3 to 77 µmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0-0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15-diol exhibited a slightly higher degradation rate than C28 and C30 1,13-diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2-3.5 °C change, when translated to temperature. The UK'37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the d13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their d13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.