28 resultados para subgrid-scale models
em Publishing Network for Geoscientific
Resumo:
Sea ice models contain many different parameterizations of which one of the most commonly used is a subgrid-scale ice thickness distribution (ITD). The effect of this model component and the associated ice strength formulation on the reproduction of observed Arctic sea ice is assessed. To this end the model's performance in reproducing satellite observations of sea ice concentration, thickness and drift is evaluated. For an unbiased comparison, different model configurations with and without an ITD are tuned with an automated parameter optimization. The original combination of ITD and ice strength parameterization does not lead to better results than a simple single category model. Yet changing to a simpler ice strength formulation, which depends linearly on the mean ice thickness across all thickness categories, allows to clearly improve the model-data misfit when using an ITD. In the original formulation, the ice strength depends strongly on the number of thickness categories, so that introducing more categories can lead to thicker albeit weaker ice on average.
Resumo:
Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, not least because they lack or misrepresent physical processes that are specific to high latitudes. The Arctic boundary layer in winter has been observed to be in either a radiatively clear or cloudy state: The radiatively clear state is characterized by strong surface radiative cooling leading to the build-up of surface-based temperature inversions, whereas the cloudy state occurs when cloud liquid water is present in the atmospheric column, allowing little or no surface radiative cooling and leading to weaker and typically elevated temperature inversions. Many large-scale models have been shown to lack the cloudy state, and some do substantially underestimate stability in the clear state. We here present results from the first Lagrangian ARCtic air FORMation experiment (Larcform 1), a GASS (Global atmospheric system studies) single-column model intercomparison which reproduces these biases of large-scale models in an idealised setup.
Resumo:
The geometries of a catchment constitute the basis for distributed physically based numerical modeling of different geoscientific disciplines. In this paper results from ground-penetrating radar (GPR) measurements, in terms of a 3D model of total sediment thickness and active layer thickness in a periglacial catchment in western Greenland, is presented. Using the topography, thickness and distribution of sediments is calculated. Vegetation classification and GPR measurements are used to scale active layer thickness from local measurements to catchment scale models. Annual maximum active layer thickness varies from 0.3 m in wetlands to 2.0 m in barren areas and areas of exposed bedrock. Maximum sediment thickness is estimated to be 12.3 m in the major valleys of the catchment. A method to correlate surface vegetation with active layer thickness is also presented. By using relatively simple methods, such as probing and vegetation classification, it is possible to upscale local point measurements to catchment scale models, in areas where the upper subsurface is relatively homogenous. The resulting spatial model of active layer thickness can be used in combination with the sediment model as a geometrical input to further studies of subsurface mass-transport and hydrological flow paths in the periglacial catchment through numerical modelling.
Resumo:
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).
Resumo:
Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.
Resumo:
The climate of Marine Isotope Stage (MIS) 11, the interglacial roughly 400,000 years ago, is investigated for four time slices, 416, 410, 400, and 394 ka. The overall picture is that MIS 11 was a relatively warm interglacial in comparison to preindustrial, with Northern Hemisphere (NH) summer temperatures early in MIS 11 (416-410 ka) warmer than preindustrial, though winters were cooler. Later in MIS 11, especially around 400 ka, conditions were cooler in the NH summer, mainly in the high latitudes. Climate changes simulated by the models were mainly driven by insolation changes, with the exception of two local feedbacks that amplify climate changes. Here, the NH high latitudes, where reductions in sea ice cover lead to a winter warming early in MIS 11, as well as the tropics, where monsoon changes lead to stronger climate variations than one would expect on the basis of latitudinal mean insolation change alone, are especially prominent. The results support a northward expansion of trees at the expense of grasses in the high northern latitudes early during MIS 11, especially in northern Asia and North America.
Resumo:
The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).
Resumo:
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6-2.4 Ma). (2) A transitional growth phase (2.4-1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic-Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
The sediments recovered during Leg 138 provide a remarkable opportunity to improve the geological time scale of the late Neogene. We have developed new time scales in the following steps. First, we constructed age models on the basis of shipboard magnetostratigraphy and biostratigraphy, using the time scale of Berggren, Kent, and Flynn (1985). Second, we refined these age models using shipboard GRAPE density measurements to provide more accurate correlation points. Third, we calibrated a time scale for the past 6 m.y. by matching the high-frequency GRAPE density variations to the orbital insolation record of Berger and Loutre (1991); we also took into account d18O records, where they were available. Fourth, we generated a new seafloor anomaly time scale using our astronomical calibration of C3A.n (t) at 5.875 Ma and an age of 9.639 Ma for C5n.1n (t) that is based on a new radiometric calibration (Baksi, 1992). Fifth, we recalibrated the records older than 6 Ma to this new scale. Finally, we reconsidered the 6- to 10-Ma interval and found that this could also be partially tuned astronomically.
Resumo:
Here we present an improved astronomical timescale since 5 Ma as recorded in the ODP Site 1143 in the southern South China Sea, using a recently published Asian summer monsoon record (hematite to goethite content ratio, Hm/Gt) and a parallel benthic d18O record. Correlation of the benthic d18O record to the stack of 57 globally distributed benthic d18O records (LR04 stack) and the Hm/Gt curve to the 65°N summer insolation curve is a particularly useful approach to obtain refined timescales. Hence, it constitutes the basis for our effort. Our proposed modifications result in a more accurate and robust chronology than the existing astronomical timescale for the ODP Site 1143. This updated timescale further enables a detailed study of the orbital variability of low-latitude Asian summer monsoon throughout the Plio-Pleistocene. Comparison of the Hm/Gt record with the d18O record from the same core reveals that the oscillations of low-latitude Asian summer monsoon over orbital scales differed considerably from the glacial-interglacial climate cycles. The popular view that summer monsoon intensifies during interglacial stages and weakens during glacial stages appears to be too simplistic for low-latitude Asia. In low-latitude Asia, some strong summer monsoon intervals appear to have also occurred during glacial stages in addition to their increased occurrence during interglacial stages. Vice versa, some notably weak summer monsoon intervals have also occurred during interglacial stages next to their anticipated occurrence during glacial stages. The well-known mid-Pleistocene transition (MPT) is only identified in the benthic d18O record but not in the Hm/Gt record from the same core. This suggests that the MPT may be a feature of high- and middle-latitude climates, possibly determined by high-latitude ice sheet dynamics. For low-latitude monsoonal climate, its orbital-scale variations respond more directly to insolation and are little influenced by high-latitude processes, thus the MPT is likely not recorded. In addition, the Hm/Gt record suggests that low-latitude Asian summer monsoon intensity has a long-term decreasing trend since 2.8 Ma with increased oscillation amplitude. This long-term variability is presumably linked to the Northern Hemisphere glaciation since then.
Resumo:
This study focuses on the present-day surface elevation of the Greenland and Antarctic ice sheets. Based on 3 years of CryoSat-2 data acquisition we derived new elevation models (DEMs) as well as elevation change maps and volume change estimates for both ice sheets. Here we present the new DEMs and their corresponding error maps. The accuracy of the derived DEMs for Greenland and Antarctica is similar to those of previous DEMs obtained by satellite-based laser and radar altimeters. Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an uncertainty of less than 3 m ± 15 m. The surface elevation change rates between January 2011 and January 2014 are presented for both ice sheets. We compared our results to elevation change rates obtained from ICESat data covering the time period from 2003 to 2009. The comparison reveals that in West Antarctica the volume loss has increased by a factor of 3. It also shows an anomalous thickening in Dronning Maud Land, East Antarctica which represents a known large-scale accumulation event. This anomaly partly compensates for the observed increased volume loss of the Antarctic Peninsula and West Antarctica. For Greenland we find a volume loss increased by a factor of 2.5 compared to the ICESat period with large negative elevation changes concentrated at the west and southeast coasts. The combined volume change of Greenland and Antarctica for the observation period is estimated to be -503 ± 107 km**3/yr. Greenland contributes nearly 75% to the total volume change with -375 ± 24 km**3/yr.
Resumo:
Ten ODP sites drilled in a depth transect (2164-4775 m water depth) during Leg 172 recovered high-deposition rate (>20 cm/kyr) sedimentary sections from sediment drifts in the western North Atlantic. For each site an age model covering the past 0.8-0.9 Ma has been developed. The time scales have a resolution of 10-20 kyr and are derived by tuning variations of estimated carbonate content to the orbital parameters precession and obliquity. Based on the similarity in the signature of proxy records and the spectral character of the time series, the sites are divided into two groups: precession cycles are better developed in carbonate records from a group of shallow sites (2164-2975 m water depth, Sites 1055-1058) while the deeper sites (2995-4775 m water depth, Sites 1060-1063) are characterized by higher spectral density in the obliquity band. The resulting time scales show excellent coherence with other dated carbonate and isotope records from low latitudes. Besides the typical Milankovitch cyclicity significant variance of the resulting carbonate time series is concentrated at millennial-scale changes with periods of about 12, 6, 4, 2.5, and 1.5 kyr. Comparisons of carbonate records from the Blake Bahama Outer Ridge and the Bermuda Rise reveal a remarkable similarity in the time and frequency domain indicating a basin-wide uniform sedimentation pattern during the last 0.9 Ma.
Resumo:
The distribution of rainfall in tropical Africa is controlled by the African rainbelt**1, which oscillates on a seasonal basis. The rainbelt has varied on centennial to millennial timescales along with changes in Northern Hemisphere high-latitude climate**2, 3, 4, 5, the Atlantic meridional overturning circulation**6 and low-latitude insolation**7 over the past glacial-interglacial cycle. However, the overall dynamics of the African rainbelt remain poorly constrained and are not always consistent with a latitudinal migration**2, 4, 5, 6, as has been proposed for other regions**8, 9. Here we use terrestrially derived organic and sedimentary markers from marine sediment cores to reconstruct the distribution of vegetation, and hence rainfall, in tropical Africa during extreme climate states over the past 23,000 years. Our data indicate that rather than migrating latitudinally, the rainbelt contracted and expanded symmetrically in both hemispheres in response to changes in climate. During the Last Glacial Maximum and Heinrich Stadial 1, the rainbelt contracted relative to the late Holocene, which we attribute to a latitudinal compression of atmospheric circulation associated with lower global mean temperatures**10. Conversely, during the mid-Holocene climatic optimum, the rainbelt expanded across tropical Africa. In light of our findings, it is not clear whether the tropical rainbelt has migrated latitudinally on a global scale, as has been suggested**8,9.
Resumo:
An ensemble of new, high-resolution records of surface ocean hydrography from the Indian-Atlantic oceanic gateway, south of Africa, demonstrates recurrent and high-amplitude salinity oscillations in the Agulhas Leakage area during the penultimate glacial-interglacial cycle. A series of millennial-scale salinification events, indicating strengthened salt leakage into the South Atlantic, appear to correlate with abrupt changes in the North Atlantic climate and Atlantic Meridional Overturning Circulation (AMOC). This interhemispheric coupling, which plausibly involved changes in the Hadley Cell and midlatitude westerlies that impacted the interocean transport at the tip of Africa, suggests that the Agulhas Leakage acted as a source of negative buoyancy for the perturbed AMOC, possibly aiding its return to full strength. Our finding points to the Indian-to-Atlantic salt transport as a potentially important modulator of the AMOC during the abrupt climate changes of the Late Pleistocene.