8 resultados para storm surges
em Publishing Network for Geoscientific
Resumo:
A seawall was constructed in 1897 along the steep coast of Streckelsberg, Usedom Island to stop the cliff retreat. It was destroyed several times by storm induced sea floods, reconstructed and gradually extended to a length of 450 m. After the severe storm event of 1/2.3.1949, no more repair work was implemented. The ruins were no longer capable of preventing further erosion of the Streckelsberg cliff. A new protective structure became a necessity against ongoing erosion, and to check the lowering of the abrasion platform. The construction of three breakwaters began in 1995. A severe storm occurred on 3/4.11.1995 before their completion. Coastal bottom sediment mapping using a sidescan-sonar carried out two days later showed that a channel system down to a depth of 1.5 m was cut into the sand layer covering the sea floor on both sides of the Koserow Bank. The bottom of these channels was paved with gravel and boulders. This layer was encountered in the whole surveyed area below a mobile sand layer. Discharged bodies of fine sand half a meter high and erosional cavities several m2 in diameter around boulders led to the conclusion that an intensive sediment movement down to a depth of 11 m had taken place during the storm. A storm related direction of sediment discharge could not be identified. The existing section of the breakwaters withstood the severe storm.
Resumo:
Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.
Resumo:
This study investigates the rate of erosion during the 1951-2006 period on the Bykovsky Peninsula, located north-east of the harbour town of Tiksi, north Siberia. Its coastline, which is characterized by the presence of ice-rich sediment (Ice Complex) and the vicinity of the Lena River Delta, retreated at a mean rate of 0.59 m/yr between 1951 and 2006. Total erosion ranged from 434 m of erosion to 92 m of accretion during these 56 years and exhibited large variability (sigma = 45.4). Ninety-seven percent of the rates observed were less than 2 m/yr and 81.6% were less than 1 m/yr. No significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. Erosion modes and rates actually appear to be strongly dependant on the nature of the backshore material, erosion being stronger along low-lying coastal stretches affected by past or current thermokarst activity. The juxtaposition of wind records monitored at the town of Tiksi and erosion records yielded no significant relationship despite strong record amplitude for both data sets. We explain this poor relationship by the only rough incorporation of sea-ice cover in our storm extraction algorithm, the use of land-based wind records vs. offshore winds, the proximity of the peninsula to the Lena River Delta freshwater and sediment plume and the local topographical constraints on wave development.
Resumo:
To improve our knowledge of the influence of land-use on solute behaviour and export rates in neotropical montane catchments we investigated total organic carbon (TOC), Ca, Mg, Na, K, NO3 and SO4 concentrations during April 2007-May 2008 at different flow conditions and over time in six forested and pasture-dominated headwaters (0.7-76 km2) in Ecuador. NO3 and SO4 concentrations decreased during the study period, with a continual decrease in NO3 and an abrupt decrease in February 2008 for SO4. We attribute this to changing weather regimes connected to a weakening La Niña event. Stream Na concentration decreased in all catchments, and Mg and Ca concentration decreased in all but the forested catchments during storm flow. Under all land-uses TOC increased at high flows. The differences in solute behaviour during storm flow might be attributed to largely shallow subsurface and surface flow paths in pasture streams on the one hand, and a predominant origin of storm flow from the organic layer in the forested streams on the other hand. Nutrient export rates in the forested streams were comparable to the values found in literature for tropical streams. They amounted to 6-8 kg/ha/y for Ca, 7-8 kg/ha/y for K, 4-5 kg/ha/y for Mg, 11-14 kg/ha/y for Na, 19-22 kg/ha/y for NO3 (i.e. 4.3-5.0 kg/ha/y NO3-N) and 17 kg/ha/y for SO4. Our data contradict the assumption that nutrient export increases with the loss of forest cover. For NO3 we observed a positive correlation of export value and percentage forest cover.
Resumo:
The first hole of the Cape Roberts Project, CRP-1, was drilled in October, 1997, to a depth of 148 metres below the sea floor (mbsf) before being terminated unexpectedly the loss of fast sea-ice seaward of the rig following a severe storm. The site lies in 150 m of water at 77.008°S and 163.755°E, 16 km off Cape Roberts. This part of the report outlines the geologic setting, a gently tilted sequence near the margin of the Victoria Land Basin, and describes the history of the growth of sea ice, which provided the drilling platform, as well as the history of the drilling itself. Core recovery was around 77% in soft and brittle strata to 100 m and 98% below that. The sequence was found to comprise a Quaternary glacigenic interval down to 43.55 mbsf and below this an early Miocene interval that was also glacigenic. Core properties that were studied include fracture patterns, porosity, sonic velocity and magnetic susceptibility. Velocity in particular was useful in relating the cored sequence to the regional seismic stratigraphy. A preliminary assessment suggests that the bottom of the hole is 15 m short of the boundary between seismic sequences V3 and V4. Analytical facilities new to the Antarctic and used for processing samples for the project are described here and include a bench top palynological processing system and a palaeomagnetic laboratory. The core management and sampling system, which recorded over 2000 samples, is also outlined.