18 resultados para stars : pulsars : individual : PSR B0833-45

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental observations on pathways of water movement are discussed in relation to anatomical and micromorphological features of five moss species from Signy Island, South Orkney Islands. Significant internal uptake of water was recorded only in the mesic species Polytrichum alpinum (internal=>60% of total) and Bartramia patens (internal=c.30% of total), in experiments in which uptake by cut shoots was compared in individuals with the external pathway blocked, and others with both external and internal pathways open. Internal uptake maintained shoot water content close to full turgor in P. alpinun and at 30% of full tugor in B. patens, whereas water content fell to 12-15% dry wt. in the lithophytes Andreaea gainii and Schistidium antarctici and in the mesic/hydric species Drepanocladus uncinatus, with the external pathway blocked. Where both pathways were open water uptake from below maintained water content at or above full turgor in shoots of all five species. External water uptake by capillarity occurred most rapidly in the lithophytes, and was slower in initially air-dry than in hydrated shoots of the other species. The spreading limbs of leaves in B. patens and P. alpinum are water-repellent, as are the bright green leaves in the apical 1-2 mm of dry shoots of the lithophytes. A central strand of hydroids is well-developed only in B. patens and P. alpinum. These two species have deposits of surface wax on parts of the leaves, and surface wax also occurs on the green apical leaves in some specimens of S. antarcticum and other lithophytes from Signy Island.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phyric basalts recovered from DSDP Legs 45 and 46 contain abundant plagioclase phenocrysts which occur as either discrete single grains (megacrysts) or aggregates (glomerocrysts) and which are too abundant and too anorthitic to have crystallized from a liquid with the observed bulk rock composition. Almost all the plagioclase crystals are complexly zoned. In most cases two abrupt and relatively large compositional changes associated with continuous internal morphologic boundaries divide the plagioclase crystals into three parts: core, mantle and rim. The cores exhibit two major types of morphology: tabular, with a euhedral to slightly rounded outline; or a skeletal inner core wrapped by a slightly rounded homogeneous outer core. The mantle region is characterized by a zoning pattern composed of one to several spikes/plateaus superimposed on a gently zoned base line, with one large plateau always at the outside of the mantle, and by, in most cases, a rounded internal morphology. The inner rim is typically oscillatory zoned. The width of the outer rim can be correlated with the position of the individual crystal in the basalt pillow. The presence of a skeletal inner core and the concentration of glass inclusions in low-An zones in the mantle region suggest that the liquid in which these parts of the crystals were growing was undercooled some amount. The resorption features at the outer margins of low-An zones indicate superheating of the liquid with respect to the crystal. It is proposed that the plagioclase cores formed during injection of primitive magma into a previously existing magma chamber, that the mantle formed during mixing of a partially mixed magma and the remaining magma already in the chamber, and that the inner rim formed when the mixed magma was in a sheeted dike system. The large plateau at the outside of the mantle may have formed during the injection of the next batch of primitive magma into the main chamber, which may trigger an eruption. This model is consistent with fluid dynamic calculations and geochemically based magma mixing models, and is suggested to be the major mechanism for generating the disequilibrium conditions in the magma.