22 resultados para stand of plants
em Publishing Network for Geoscientific
Resumo:
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.
Resumo:
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29-33 weighted mean average d13C values from -33 per mil near the equator to around -26 per mil further south. Additionally, C25-35n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.
Resumo:
The early Eocene epoch was characterized by extreme global warmth, which in terrestrial settings was characterized by an expansion of near-tropical vegetation belts into the high latitudes. During the middle to late Eocene, global cooling caused the retreat of tropical vegetation to lower latitudes. In high-latitude settings, near-tropical vegetation was replaced by temperate floras. This floral change has recently been traced as far south as Antarctica, where along the Wilkes Land margin paratropical forests thrived during the early Eocene and temperate Nothofagus forests developed during the middle Eocene. Here we provide both qualitative and quantitative palynological data for this floral turnover based on a sporomorph record recovered at Integrated Ocean Drilling Program (IODP) Site U1356 off the Wilkes Land margin. Following the nearest living relative concept and based on a comparison with modern vegetation types, we examine the structure and diversity patterns of the Eocene vegetation along the Wilkes Land margin. Our results indicate that the early Eocene forests along the Wilkes Land margin were characterized by a diverse canopy composed of plants that today occur in tropical settings; their richness pattern was similar to that of present-day forests from New Caledonia. The middle Eocene forests were characterized by a canopy dominated by Nothofagus and exhibited richness patterns similar to modern Nothofagus forests from New Zealand.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.
Resumo:
We present a 3000-yr rainfall reconstruction from the Galápagos Islands that is based on paired biomarker records from the sediment of El Junco Lake. Located in the eastern equatorial Pacific, the climate of the Galápagos Islands is governed by movements of the Intertropical Convergence Zone (ITCZ) and the El Niño-Southern Oscillation (ENSO). We use a novel method for reconstructing past ENSO- and ITCZ-related rainfall changes through analysis of molecular and isotopic biomarker records representing several types of plants and algae that grow under differing climatic conditions. We propose that ?D values of dinosterol, a sterol produced by dinoflagellates, record changes in mean rainfall in El Junco Lake, while dD values of C34 botryococcene, a hydrocarbon unique to the green alga Botryococcus braunii, record changes in rainfall associated with moderate-to-strong El Niño events. We use these proxies to infer changes in mean rainfall and El Niño-related rainfall over the past 3000 yr. During periods in which the inferred change in El Niño-related rainfall opposed the change in mean rainfall, we infer changes in the amount of ITCZ-related rainfall. Simulations with an idealized isotope hydrology model of El Junco Lake help illustrate the interpretation of these proxy reconstructions. Opposing changes in El Niño- and ITCZ-related rainfall appear to account for several of the largest inferred hydrologic changes in El Junco Lake. We propose that these reconstructions can be used to infer changes in frequency and/or intensity of El Niño events and changes in the position of the ITCZ in the eastern equatorial Pacific over the past 3000 yr. Comparison with El Junco Lake sediment grain size records indicates general agreement of inferred rainfall changes over the late Holocene.
Resumo:
Results and discussion cover pigment analyses of 36 sediment samples recovered by Deep Sea Drilling Project Leg 64, and six samples from the Leg 64 site-survey cruise in the Guaymas Basin (Scripps Institution of Oceanography, Leg 3). Pigments investigated were tetrapyrroles, tetraterpenoids, and the PAH compound perylene. Traces of mixed nickel and copper ETIO-porphyrins were ubiquitous in all sediment samples, except for the very surface (i.e., <2 m sub-bottom), and their presence is taken as an indication of minor influxes of previously oxidized allochthonous (terrestrial) organic matter. Phorbides and chlorins isolated from Site 479 sediment samples (i.e., the oxygen-minimum locale, northeast of the Guaymas Basin) well represent the reductive diagenesis ("Treibs Scheme"; see Baker and Palmer, 1978; Treibs, 1936) of chlorophyll derivatives. Three forms of pheophytin-a, plus a variety of phorbides, were found to give rise to freebase porphyrins, nickel phylloerythrin, and nickel porphyrins, with increasing depth of burial (increasing temperature). Sediments from Sites 481, 10G, and 18G yielded chlorophyll derivatives characteristic of early oxidative alterations. Included among these pigments are allomerized pheophytin-a, purpurin-18, and chlorin-p6. The high thermal gradient imposed upon the late Quaternary sediments of Site 477 greatly accelerated chlorophyll diagenesis in the adjacent overlying sediments, that is, the production of large quantities of free-base desoxophylloerythroetioporphyrin (DPEP) occurred in a section (477-7-5) presently only 49.8 meters sub-bottom. Present depth and age of these sediments are such that only chlorins and phorbides would be expected. Carotenoid (i.e., tetraterpenoids) concentrations were found to decrease rapidly with increasing sub-bottom depth. Less deeply buried sediments (e.g., 0-30 m) yielded mixtures of carotenes and oxygen-substituted carotenoids. Oxygencontaining (oxy-, oxo-, epoxy-) carotenoids were found to be lost preferentially with increased depth of burial. Early carotenoid diagenesis is suggested as involving interacting reductions and dehydrations whereby dehydro-, didehydro-, and retro-carotenes are generated. Destruction of carotenoids as pigments may involve oxidative cleavage of the isoprenoid chain through epoxy intermediates, akin to changes in the senescent cells of plants. Perylene was found to be a common component of the extractable organic matter from all sediments investigated. The generation of alkyl perylenes was found to parallel increases in the existing thermal regime at all sites. Igneous sills and sill complexes within the sediment profile of Site 481 altered (i.e., scrambled) the otherwise straightforward thermally induced alkylation of perylene. The degree of perylene alkylation is proposed as an indicator of geothermal stress for non-contemporaneous marine sediments.
Resumo:
Coupled analyses of n-alkane biomarkers and plant macrofossils from a peat plateau deposit in the northeast European Russian Arctic were carried out to assess the effects of past hydrology on the molecular contributions of plants to the peat. The n-alkane biomarkers accumulated over 9.6 kyr of local paleohydrological changes in this complex peat profile in which a succession of vegetation changes occurred during a transition from a wet fen to a relatively dry peat plateau bog. This study shows that the contribution of the n-C31 alkane from rootlets to peat layers rich in fine and dark roots is important. The results further indicate that the n-alkane Paq and n-C23/n-C29 biomarker proxies that have been useful to reconstruct past water table levels in many peat deposits can be misleading when the contributions of Betula and Sphagnum fuscum to the peat are large. Under these conditions, the C23/(C27 + C31) n-alkane ratio seems to correct for the presence of Betula and S. fuscum and provides a better description for the relative amounts of moisture. The average chain length (ACL) n-alkane proxy also appears to be a good paleohydrology proxy in having larger values during dry and cold conditions in this Arctic bog setting.
Resumo:
Isotopic and geochemical proxies measured in bulk sediment samples of two gravity cores south of Barbados were used to develop a model for the organic carbon accumulation during the last 250 kyr with respect to the influence of terrestrial sources (e.g. the Orinoco and Amazon rivers) as well as the marine contributions, sea-level, surface currents, and morphological features. Total organic carbon (TOC) content and the stable organic carbon isotopes of the organic matter (delta13Corg) show no glacial to interglacial variability. TOC content is generally very low in both cores but increases between 40 and 120 kyr. A comparable pattern is detected in accumulation rates of the organic matter but is only hinted in the delta13Corg ratios. The results suggest that during the last 250 kyr the organic carbon accumulation south of Barbados has been controlled by glacioeustatic sea-level changes and the general morphologic settings. A sea-level stand of 15-80 m below present day seems generally to favour the accumulation of organic matter south of Barbados. Although delta13Corg ratios reveal no clear trend in the organic matter composition, terrestrial organic carbon discharged by rivers (Orinoco or Amazon) seems not to be a major component in the sediments of that area during the last 250 kyr.