6 resultados para stains
em Publishing Network for Geoscientific
Resumo:
Analyses of extractable organic matter from selected core samples obtained at DSDP Site 535 in the eastern Gulf of Mexico show that the asphalt (or tar) and adjacent oil stains in Lower Cretaceous fractured limestones have a common origin and are not derived from the surrounding organic-matter-rich limestones. Organic matter indigenous to those surrounding limestones was shown to be thermally immature and incapable of yielding the hydrocarbon mixture discovered. In contrast, the oil-stained and asphaltic material appears to be a post-migration alteration product of a mature oil that has migrated from source rocks deeper in the section, or from stratigraphically equivalent but compositionally different source-facies down-dip from the drill site. Further, hydrocarbons of the altered petroleum residues were shown to be similar to Sunniland-type oils found in Lower Cretaceous rocks of South Florida. The results suggest that shallowwater, platform-type source-rock facies similar to those that generated Sunniland-type oils, or deeper-water facies having comparable oil-generating material, are present in this deep-water (> 3000 m) environment. These findings have important implications for the petroleum potential in the eastern Gulf of Mexico and for certain types of deep-sea sediments.
Resumo:
There are substantial differences in the character of organic matter contained in the Pleistocene and Cretaceous sedimentary sequences of DSDP Site 535. The argillaceous Pleistocene section contains type III, gas-prone organic matter whereas the calcareous Cretaceous section is dominated by type II, oil-prone organic matter. A more detailed investigation of the Cretaceous section reveals that the finely laminated limestones of Valanginian to Barremian age are of good to excellent source quality. The indigenous organic matter contained within this organically rich section is thermally immature, not having undergone sufficient thermal diagenesis for the generation and expulsion of hydrocarbons. Within this stratigraphic section, however, staining by mature hydrocarbons was detected. These stains are associated with a fractured interval. These fractures may in turn represent potential migration pathways.
Resumo:
Early diagenesis in Leg 126 forearc and backarc sands/sandstones is characterized by the dissolution of intermediate to mafic brown glass, the alteration of colorless rhyolitic glass to clay minerals, precipitation of thin clay-mineral rim cements, and minor precipitation of clinoptilolite cements. Later, more intense diagenesis is restricted to Oligocene forearc basin sediments at Sites 787,792, and 793. In these sections, the effects of early diagenesis have been intensified and overprinted by later diagenetic effects including (1) large-scale dissolution of feldspar and pyroxene crystals, (2) further dissolution of vitric components, (3) precipitation of minor carbonate cements, and (4) pervasive, multiple-staged zeolite cementation. Zeolite minerals present include analcite, mordenite, natrolite, heulandite, wairakite, chabazite, erionite, herschelite, and phillipsite. The latest diagenetic events appear to be the minor dissolution of zeolite cements and the precipitation of minor carbonate and potassium feldspar(?) cements. Observed porosity types include primary interparticles; primary intraparticles in vesicular glass and foraminifers; primary interparticles reduced by compaction and cementation; secondary intraparticles produced by dissolution of feldspar, nonopaque heavy minerals, volcanic glass, and foraminifer tests; and secondary interparticles produced by the dissolution of zeolite cements. Within forearc Oligocene sections at Sites 787 and 792, diagenetic effects appear to decrease with depth in the Oligocene section; however, at Site 793 the majority of samples are intensely altered.
Resumo:
Fossil manganese nodules and encrustations from seamount' and basin' localities in the Transdanubian Central Mountains of Hungary are lithologically, mineralogically and chemically similar to some modern marine ferromanganese oxide deposits, and show no evidence of postdepositional changes other than cementation. Five groups of deposits were encountered: Fe/Mn nodules, encrusted shells, pavements, stains, and Fe oxide encrusted intraclasts, the first three of which are specific to the 'seamount' environment and the last to the basins'. Optical and electron microprobe investigation of the samples shows them to exhibit many similarities with modern ferromanganese oxide deposits, and that many of the nodules are surrounded by a halo of dispersed ferromanganese oxides, strongly suggesting that they continued to accrete metals through the pore waters of unlithified sediments for a period after burial. By contrast, pavements which appear to have grown on hardgrounds at the sea floor show little or no evidence of derivation of metals from underlying sediments. Geochemical investigations on the deposits show the seamount' varieties to be closer in composition to most modern nodules and crusts than the basin' varieties, and that the latter are essentially manganese and trace-element-poor ferruginous deposits. Nevertheless, all can be more or less compositionally equated with modern ferromanganese oxide deposits forming in marginal Atlantic environments, which would be in accord with the proposed depositional environment of the Transdanubian Central Mountains based on other evidence.