611 resultados para stable nitrogen isotopic analysis
em Publishing Network for Geoscientific
Resumo:
Glycolipids are prominent constituents in the membranes of cells from all domains of life. For example, diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2Gly-GDGTs) are associated with methanotrophic ANME-1 archaea and heterotrophic benthic archaea, two archaeal groups of global biogeochemical importance. The hydrophobic biphytane moieties of 2Gly-GDGTs from these two uncultivated archaeal groups exhibit distinct carbon isotopic compositions. To explore whether the isotopic compositions of the sugar headgroups provide additional information on the metabolism of their producers, we developed a procedure to analyze the d13C values of glycosidic headgroups. Successful determination was achieved by (1) monitoring the contamination from free sugars during lipid extraction and preparation, (2) optimizing the hydrolytic conditions for glycolipids, and (3) derivatizing the resulting sugars into aldononitrile acetate derivatives, which are stable enough to withstand a subsequent column purification step. First results of d13C values of sugars cleaved from 2Gly-GDGTs in two marine sediment samples, one containing predominantly ANME-1 archaea and the other benthic archaea, were obtained and compared with the d13C values of the corresponding biphytanes. In both samples the dominant sugar headgroups were enriched in 13C relative to the corresponding major biphytane. This 13C enrichment was significantly larger in the putative major glycolipids from ANME-1 archaea (~15 per mil) than in those from benthic archaea (<7 per mil). This method opens a new analytical window for the examination of carbon isotopic relationships between sugars and lipids in uncultivated organisms.
Resumo:
Stable carbon and nitrogen isotopic ratios (d13C and d15N) of organic matter were measured in three sediment cores from deep basins of the Bering Sea to investigate past changes in surface nutrient conditions. For surface water reconstructions, hemipelagic layers in the cores were distinguished from turbidite layers (on the basis of their sedimentary structures and 14C ages) and analyzed for isotopic studies. Although d13C profiles may have been affected by diagenesis, both d15N and d13C values showed common positive anomalies during the last deglaciation. We explain these anomalies as reflecting suppressed vertical mixing and low nutrient concentrations in surface waters caused by injection of meltwater from alpine glaciers around the Bering Sea.
Resumo:
Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (d13C and d15N) measured in whiskers collected from their newborn pups. The d15N values in the whiskers of individual seals ranged from 11.95 to 17.45 per mil, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.
Comparison of the stable carbon and nitrogen isotopic values of gill and white muscle tissue of fish
Resumo:
The potential use of stable carbon and nitrogen isotope ratios (d13C, d15N) of fish gills for studies on fish feeding ecology was evaluated by comparing the d13C and d15N of gill tissue with the more commonly used white muscle tissue. To account for the effect of lipid content on the d13C signatures, a study-specific lipid correction model based on C:N ratios was developed and applied to the bulk d13C data. For the majority of species in the study, we found no significant difference in d13C values between gill and muscle tissue after correction, but several species showed a small (0.3-1.4 per mil) depletion in 13C in white muscle compared to gill tissue. The average species difference in d15N between muscle and gill tissue ranged from -0.2 to 1.6 per mil for the different fish species with muscle tissue generally more enriched in 15N. The d13C values of muscle and gill were strongly linearly correlated (R**2 = 0.85) over a large isotopic range (13 per mil), suggesting that both tissues can be used to determine long-term feeding or migratory habits of fish. Muscle and gill tissue bulk d15N values were also strongly positively correlated (R**2= 0.76) but with a small difference between muscle and gill tissue. This difference indicates that the bulk d15N of the two tissue types may be influenced by different isotopic turnover rates or a different composition of amino acids.
Resumo:
We compare total and biogenic particle fluxes and stable nitrogen isotope ratios (d15N) at three mooring sites along a productivity gradient in the Canary Islands region with surface sediment accumulation rates and sedimentary d15N. Higher particle fluxes and sediment accumulation rates, and lower d15N were observed in the upwelling influenced eastern boundary region (EBC) compared to the oligotrophic sites north of Gran Canaria [European Station for Time-Series in the Ocean, Canary Islands (ESTOC]] and north of La Palma (LP). The impact of organic matter degradation and lateral particle advection on sediment accumulation was quantified with respect to the multi-year flux record at the ESTOC. Remineralisation of organic matter in the water column and at the sediment surface resulted in an organic carbon preservation of about 0.8% and total nitrogen preservation of about 0.4% of the estimated export production. Higher total and carbonate fluxes and accumulation rates in the lower traps and surface sediment compared to the upper traps indicated that at least 50% of the particulate matter at the ESTOC was derived from allochthonous sources. Low d15N values in the lower traps of the ESTOC and LP point to a source region influenced by coastal upwelling. We conclude from this study that the reconstruction of export production or nutrient regimes from sedimentary records in regions with strong productivity gradients might be biased due to the mixture of particles originating from autochthonous and allochthonous sources. This could result in an imprint of high productivity signatures on sedimentation processes in oligotrophic regions.
Resumo:
The structure and variability of pelagic food webs along the north and northwestern shelf of the Iberian Peninsula were analysed using natural abundance of nitrogen stable isotopes of plankton and pelagic consumers. Plankton composition was mainly studied in size-fractionated samples, but also the isotopic signatures of three copepod species, as representative of primary consumers, were considered. Several fish species were included as planktivorous consumers, with special attention to sardine (Sardina pilchardus). Finally, top pelagic consumers were represented by the common dolphin (Delphinus delphis). The relationship between trophic position and body size implies large variability in the ratio of predator to prey sizes, likely because widespread omnivory and plankton consumption by relatively large predators. Planktivorous species share a common trophic position, suggesting potential competition for food, and low nitrogen isotope enrichment between prey and consumers suggest nutrient limitation and recycling at the base of the food web. Both experimental and field evidences indicate that the muscle of sardine integrates fish diet over seasonal periods and reflects the composition of plankton from large shelf areas. The low mobility of sardines during periods of low population size is consistent with differential isotopic signatures found in shelf zones characterised by upwelling nutrient inputs.
Resumo:
The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.
Resumo:
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and Bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.
Resumo:
Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (d15N) and carbon (d13C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg/kg dw) and tissue d15N (per mil) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (d15N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.
Resumo:
We are writing to comment on the work of Tamburini et al. (2003, doi:10.1029/2000PA000616). During the course of subsequent discussions between the authors and ourselves, it has become clear that the published sedimentary nitrogen isotopic values for Ocean Drilling Program (ODP) Site 724 are in error. Our reanalysis of sediment samples from the same intervals has revealed a significant offset from the original d15N data, requiring a revised assessment of their initial interpretation. The purposes of this comment are to (1) address the origin of these errors; (2) outline a protocol for future validation of nitrogen isotopic analyses; and (3) provide revised interpretations of the sedimentary d15N data in terms of the regional relative contributions of denitrification and nitrogen fixation and mean state of the southwest monsoon. (2) Nitrogen isotopic values measured on late Quaternary sediments at Arabian Sea ODP Site 724 by Tamburini et al. (2003, doi:10.1029/2000PA000616) are inexplicably different from a number of published records of d15N from very nearby on the Oman margin (Altabet et al., 1995, doi:10.1038/373506a0; 1999, doi:10.1029/1999PA900035; 2002, doi:10.1038/415159a; Higginson et al., 2004, doi:10.1016/j.gca.2004.03.015) and elsewhere in the Arabian Sea (Reichart et al., 1998, doi:10.1029/98PA02203). These data were generated using similar instrumentation (elemental analyzer coupled with an isotope ratio mass spectrometer) and analytical methodology to those already published. Concerned by this clear discrepancy, we analyzed aliquots of sediment from the same depth intervals for nitrogen abundance and bulk sedimentary nitrogen isotopes. We have been unable to duplicate the values published by Tamburini et al. (2003, doi:10.1029/2000PA000616 ), even after analysis of multiple replicates and due consideration of natural sediment heterogeneities and postrecovery sample storage.