11 resultados para solar and pellet heating systems
em Publishing Network for Geoscientific
Resumo:
Harpacticoid Microsetella norvegica was fed with 5 concentrations of aggregates, collected from the station 1 (experiment 1) or from station 2 (experiment 2). The aggregates at station 1 were of phytoplankton origin and consisted mainly of Phaeocystis sp. and radiolarians; aggregates at station 2 were detritus collected from deep Mocness tows. M. norvegica was starved in filtered sea water for > 12 h, after which it was incubated together with aggregates for 8 h. After the incubation, pellets were counted and Microsetella and remaining aggregates were counted and measured. Pellet production of M. norvegica reflects feeding so that when pellet production is plotted against aggregate concentration, a functional response can be obtained.
Resumo:
Egg and pellet production of Calanus finmarchicus was measured at 6-h intervals at all stations during the second leg of the cruise. Calanus was collected at the surface 150-m using a WP2 plankton net, and incubated in chl-max water for 24-h. Each 6 hours females were transferred to a new food solution and eggs and pellets were counted. In the end of the experiment, females were measured for prosome length. The purpose of the exercise was to calculate the minimum carbon consumption of Calanus, and how large proportion of ingestion is egested as fast sinking fecal pellets, and when.
Resumo:
We examined sediments from Neogene and Quaternary sections of the Benguela and Oman upwelling systems (DSDP Site 532, ODP Sites 723 and 722) to determine environmental and geochemical factors which control and limit pyrite formation in organic-carbon-rich marine sediments. Those samples from the upwelling sites, which contained low to moderate concentrations of total organic carbon (0.7%-3%), had C/S ratios typical of normal marine sediments, i.e., around 2.8. In these sediments, TOC availability probably limited pyrite formation. Results that do not conform with accepted models were found for the sediments high in TOC (3^0-12.4%). The organic matter was of marine origin and contained considerable pyrolytic hydrocarbons, a fact that we take as a sign of low degradation, yet significant concentrations of dissolved sulfate coexisted with it (> 5 mmol/L in the case of Sites 532 and 723). Detrital iron was probably not limiting in either case, because the degree of pyritization was always less than 0.65. Therefore, controls on sulfate reduction and pyrite formation in the organic matter-rich sediments do not appear to conform simply to generally accepted diagenetic models. The data from these thermally immature, old, and organic-rich marine sediments imply that (1) the total reduced sulfur content of organic-rich marine upwelling sediments rarely exceeds an approximate boundary of 1.5% by weight, (2) the C/S ratio of these sediments is not constant and usually much higher than the empirical values proposed for marine sediments. We conclude that sedimentary pyrite formation in upwelling sediments is limited by an as yet unknown factor, and that caution is advised in using C/S ratios and C vs. S diagrams in paleoenvironmental reconstructions for organic-rich sediments.
Resumo:
The effects of temperature and food availability on feeding and egg production of the Arctic copepod Calanus hyperboreus were investigated in Disko Bay, western Greenland, from winter to spring 2009. The abundance of females in the near bottom layer and the egg production of C. hyperboreus prior to the spring bloom document that reproduction relies on lipid stores. The maximum in situ egg production (± SE) of 54 ± 8 eggs female/d was recorded in mid-February at chlorophyll a concentrations below 0.1 µg/l, whereas no egg production was observed in mid-April when the spring bloom developed. After reproduction, the females migrated to the surface layer to exploit the bloom and refill their lipid stores. In 2 laboratory experiments, initiated before and during the spring bloom, mature females were kept with and without food at 5 different temperatures ranging from 0 to 10°C and the fecal pellet and egg production were monitored. Food had a clear effect on fecal pellet production but no effect on egg production, while temperature did not have an effect on egg or fecal pellet production in any of the experiments. Analyses of carbon and lipid content of the females before and after the experiments did not reflect any effect of food or temperature in the pre-bloom experiment, whereas in the bloom experiment a clear positive effect of food was detected in female biochemical profiles. The lack of a temperature response suggests a future warmer ocean could be unfavorable for C. hyperboreus compared to smaller Calanus spp. which are reported to exploit minor temperature elevations for increased egg production.
Resumo:
Distribution and composition of lipids and contents of alkanes and polycyclic aromatic hydrocarbons(PAHs) in bottom sediments of the Scotia and Weddell seas are discussed. Comparatively low concentrations of organic carbon (average 0.35%) and lipids (average 0.024%) result from rapid decomposition of organic matter in upper layers of the water column. Composition of alkanes indicates that lipids are of autochthonous origin, and stable concentrations of PAHs (average 25.8 ppb, sigma 15.3 ppb) indicate that they represent the background level for bottom sediments. Higher concentrations of PAHs in sediments near the King George Island (252.1 ppb) and different distributions of individual polyarenes are produced there by the heating systems of the Polish Antarctic Station.
Resumo:
Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.
Resumo:
We evaluated whether heating occurs in sub-Antarctic megaherbs, and the relation of heating to relevant environmental variables. We measured leaf and inflorescence temperature in six sub-Antarctic megaherb species on Campbell Island, latitude 52.3°S, New Zealand Biological Region. Using thermal imaging camera (Fluke TI20, http://www.fluke.com/fluke/caen/support/software/ti-update) and thermal probe (Fluke 51 II digital thermal probe), in combination with measurement of solar radiation, ambient air temperature, wind speed, wind chill and humidity.