14 resultados para small mammals, food sources, seed

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous triple stable isotope analysis of carbon, nitrogen and sulphur was employed to study the temporal variation in the food web of a subtidal eelgrass (Zostera marina) bed in the western Baltic Sea. Samples of three potential food sources: eelgrass, epiphytes and seston, as well as consumer species were collected biweekly from March through September 2011. Temporal variation of stable isotope signatures was observed in primary producers and consumer species. However, variation within a species, particularly omnivores, often exceeded variation over time. The high degree of omnivory among the generalist feeders in this eelgrass community allows for generalist feeders to flexibly switch food sources, thus enhancing food web stability. As coastal systems are subject to seasonal changes, as well as alterations related to human disturbance and climate, these food webs may retain a certain resilience due to their plentiful omnivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals form prominent reef ecosystems along ocean margins that depend on suspended resources produced in surface waters. In this study, we investigated food processing of 13C and 15N labelled bacteria and algae by the cold-water coral Lophelia pertusa. Coral respiration, tissue incorporation of C and N and metabolic-derived C incorporation into the skeleton were traced following the additions of different food concentrations (100, 300, 1300 µg C/l) and two ratios of suspended bacterial and algal biomass (1:1, 3:1). Respiration and tissue incorporation by L. pertusa increased markedly following exposure to higher food concentrations. The net growth efficiency of L. pertusa was low (0.08±0.03), which is consistent with their slow growth rates. The contribution of algae and bacteria to total coral assimilation was proportional to the food mixture in the two lowest food concentrations, but algae were preferred over bacteria as food source at the highest food concentration. Similarly, the stoichiometric uptake of C and N was coupled in the low and medium food treatment, but was uncoupled in the high food treatment and indicated a comparatively higher uptake or retention of bacterial carbon as compared to algal nitrogen. We argue that behavioural responses for these small-sized food particles, such as tentacle behaviour, mucus trapping and physiological processing, are more likely to explain the observed food selectivity as compared to physical-mechanical considerations. A comparison of the experimental food conditions to natural organic carbon concentrations above CWC reefs suggests that L. pertusa is well adapted to exploit temporal pulses of high organic matter concentrations in the bottom water caused by internal waves and down-welling events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discovered and investigated several cold-seep sites in four depth zones of the Sea of Okhotsk off Northeast Sakhalin: outer shelf (160-250 m), upper slope (250-450 m), intermediate slope (450-800 m), and Derugin Basin (1450-1600 m). Active seepage of free methane or methane-rich fluids was detected in each zone. However, seabed photography and sampling revealed that the number of chemoautotrophic species decreases dramatically with decreasing water depth. At greatest depths in the Derugin Basin, the seeps were inhabited by bacterial mats and bivalves of the families Vesicomyidae (Calyptogena aff. pacifica, C. rectimargo, Archivesica sp.), Solemyidae (Acharax sp.) and Thyasiridae (Conchocele bisecta). In addition, pogonophoran tubeworms of the family Sclerolinidae were found in barite edifices. At the shallowest sites, on the shelf at 160 m, the seeps lack chemoautotrophic macrofauna; their locations were indicated only by the patchy occurrence of bacterial mats. Typical seep-endemic metazoans with chemosynthetic symbionts were confined to seep sites at depths below 370 m. A comparative analysis of the structure of seep and background communities suggests that differences in predation pressure may be an important determinant of this pattern. The abundance of predators such as carnivorous brachyurans and asteroids, which can invade seeps from adjacent habitats and efficiently prey on sessile seep bivalves, decreased very pronouncedly with depth. We conclude from the obvious correlation with the conspicuous pattern in the distribution of seep assemblages that, on the shelf and at the upper slope, predator pressure may be high enough to effectively impede any successful settlement of viable populations of seep-endemic metazoans. However, there was also evidence that other depth-related factors, such as bottom-water current, sedimentary regimes, oxygen concentrations and the supply of suitable settling substrates, may additionally regulate the distribution of seep fauna in the area. As a consequence of the pronounced pattern in the distribution of seep communities, their ecological significance as food sources of surrounding background fauna increased with water depth. Isotopic analyses suggest that in the Derugin Basin seep colonists feed on chemoautotrophic seep organisms, either directly or by preying on metazoans with chemosynthetic symbionts. In contrast, seep organisms apparently do not contribute to the nutrition of the adjacent background fauna on the shelf and at the slope. In this area, elevated epifaunal abundances at seep sites were caused primarily by the availability of suitable settling substrates rather than by an enrichment of food supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow cover has dramatic effects on the structure and functioning of Arctic ecosystems in winter. In the tundra, the subnivean space is the primary habitat of wintering small mammals and may be critical for their survival and reproduction. We have investigated the effects of snow cover and habitat features on the distributions of collared lemming (Dicrostonyx groenlandicus) and brown lemming (Lemmus trimucronatus) winter nests, as well as on their probabilities of reproduction and predation by stoats (Mustela erminea) and arctic foxes (Vulpes lagopus). We sampled 193 lemming winter nests and measured habitat features at all of these nests and at random sites at two spatial scales. We also monitored overwinter ground temperature at a subsample of nest and random sites. Our results demonstrate that nests were primarily located in areas with high micro-topography heterogeneity, steep slopes, deep snow cover providing thermal protection (reduced daily temperature fluctuations) and a high abundance of mosses. The probability of reproduction increased in collared lemming nests at low elevation and in brown lemming nests with high availability of some graminoid species. The probability of predation by stoats was density dependent and was higher in nests used by collared lemmings. Snow cover did not affect the probability of predation of lemming nests by stoats, but deep snow cover limited predation attempts by arctic foxes. We conclude that snow cover plays a key role in the spatial structure of wintering lemming populations and potentially in their population dynamics in the Arctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the diversity of diet composition in macrobenthic peracarid crustaceans from the Antarctic shelf and deep sea, the fatty acid (FA) composition of different species belonging to the orders Isopoda, Amphipoda, Cumacea and Tanaidacea was analysed. Multivariate analyses of the FA composition confirmed general differences between the orders, but also distinct differences within these orders. To gain information on the origin of the FAs found, the potential food sources sediment, POM and foraminiferans were included in the study. Most of the analysed amphipod species displayed high 18:1(n-9)-18:1(n-7) ratios, widely used as an indicator for a carnivorous component in the diet. Cumaceans were characterised by increased phytoplankton FA markers such as 20:5(n-3) (up to 29% of total FAs), suggesting a diet based on phytodetritus. High values of the FA 20:4(n-6) were found in some munnopsid isopods (up to 21% of total FAs) and some tanaidacean species (up to 19% of total FAs). 20:4(n-6) also occurred in high proportions in some foraminiferan samples (up to 21% of total fatty acids), but not in sediment and POM, possibly indicating the ingestion of foraminiferans by some peracarid crustaceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations at a Late Weichselian freshwater basin in northwestern Jutland, Denmark, yielded a fairly rich assemblage of vertebrate remains, mostly bones and teeth of small mammals. The remains are primarily allochthonous and the bones have been subjected to different taphonomic pathways and agents. AMS 14C-dates on terrestrial organic remains provided ages of Middle to Late Allerød time. Identifications revealed the first fossil record in Scandinavia of Rana arvalis, Sorex minutus, Ochotona cf. pusilla, Microtus gregalis, Microtus oeconomus, and Sicista cf. betulinu. Spermophilus cf. major and Desmana moschata, previously found only once and twice respectively, were retrieved, and Sorex araneus and Arvicola terrestris were recovered for the first time beyond the Atlantic chronozone. Ecologically, the Nørre Lyngby small mammal fauna can be characterized by its very high and almost equal proportions of boreal forest and steppe elements followed by a relatively high proportion of tundra elements. The fossil species share a modern area of sympatry north of the Caspian Sea from the river Volga in the west to the southern and western slopes of the Urals. If, however, the large Allerød mammals are added, the fauna is without modern analogues. The Nørre Lyngby fauna can be seen as a last expansion of the North European glacial fauna. Provided that an absolute chronology and a differentiated sea-level curve for the area can be established, the Nørre Lyngby fauna could become important for studies in mammalian dispersal and migration rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic-pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C-enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C-enrichment of benthic mats with progressively increasing d13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C/m**2/day) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C/m**2/day), whereas benthic primary production alone (145 mg C/m**2/day) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient-limited high arctic ponds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments compared to the subsurface, implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of 'fresh' (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Håkon Mosby Mud Volcano (HMMV, SW Barents Sea slope, 1280 m) is one of the numerous cold methane-venting seeps existing along the continental margins. Analyses of video-guided core samples revealed extreme differences in the diversity and density of the metazoan meiobenthic communities associated with the different sub-habitats (centre, microbial mats, Pogonophora field, outer rim) of this mud volcano. Diversity was lowest in the sulphidic, microbial mat sediments that supported the highest standing stock, with unusually high densities (11000 ind./10 cm**2) of 1 nematode species related to Geomonhystera disjuncta. Stable carbon isotope analyses revealed that this nematode species was thriving on chemosynthetically derived food sources in these sediments. Ovoviviparous reproduction has been identified as an important adaptation of parents securing the survival and development of their brood in this toxic environment. The proliferation of this single species in exclusive association with free-living, sulphide-oxidising bacteria (Beggiatoa) indicates that its dominance is strongly related to trophic specialisation, evidently uncommon among the meiofauna. This chemoautotrophic association was replaced by copepods in the bare, sulphide-free sediments of the volcano's centre, dominated by aerobic methane oxidation as the chemosynthetic process. Copepods and nauplii reached maximum densities and dominance in the volcano's centre (500 ind./10 cm**2). Their strongly depleted carbon isotope signatures indicated a trophic link with methane-derived carbon. This proliferation of only selected meiobenthic species supported by chemosynthetically derived carbon suggests that, in addition to the sediment geochemistry, the associated reduced meiobenthic diversity may equally be related to the trophic resource specificity in HMMV sub-habitats.