26 resultados para size-extensivity error
em Publishing Network for Geoscientific
Resumo:
Phytoplankton are the basis of marine food webs, and affect biogeochemical cycles. As CO2 levels increase, shifts in the frequencies and physiology of ecotypes within phytoplankton groups will affect their nutritional value and biogeochemical function. However, studies so far are based on a few representative genotypes from key species. Here, we measure changes in cellular function and growth rate at atmospheric CO2 concentrations predicted for the year 2100 in 16 ecotypes of the marine picoplankton Ostreococcus. We find that variation in plastic responses among ecotypes is on par with published between-genera variation, so the responses of one or a few ecotypes cannot estimate changes to the physiology or composition of a species under CO2 enrichment. We show that ecotypes best at taking advantage of CO2 enrichment by changing their photosynthesis rates most should increase in relative fitness, and so in frequency in a high-CO2 environment. Finally, information on sampling location, and not phylogenetic relatedness, is a good predictor of ecotypes likely to increase in frequency in this system.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
The variability in size and shape of shells of the polar planktonic foraminifer Neogloboquadrina pachyderma have been quantified in 33 recent surface sediment samples throughout the northern Atlantic Ocean and correlated with the properties of the ambient surface waters. The aim of the study was to determine whether any of the morphological features could be used to reconstruct sea surface properties in the polar realm of the North Atlantic, where most paleotemperature proxies appear to fail. The analyses revealed that shell morphology is only weakly controlled by habitat properties, whereas shell size showed a strong correlation with sea surface temperature. The regression of mean shell size on sea surface temperature revealed the presence of two trends among the sinistrally coiled shells: a continuous increase in shell size with decreasing SST in sediments deposited under polar water masses and a continuous increase in shell size with increasing SST in samples from transitional waters. The second trend mirrors the trend observed for dextrally coiled shells, which are frequent in the same samples and signal the presence of N. incompta. The identical mean shell size trends among the sinistral and dextral specimens in the temperate samples confirms the results of earlier genetic studies which indicated the existence of a small but distinct proportion of opposite coiling in N. incompta, to which the sinistral shells in the temperate samples could be attributed. The linear correlation between mean shell size and sea surface temperature in the polar domain (summer SST < 9 °C) has been used to develop an empirical formula for the reconstruction of past sea surface temperatures from shell sizes in fossil samples. The standard error of the residuals of the linear regression is 2.36 °C (1 sigma), which implies a much larger error than for most paleothermometers, but enough precision to allow resolution between results by individual paleothermometers in the polar domain. The resulting regression model has been applied on two sediment cores spanning the interval from the Last Glacial Maximum (LGM) to the present day. The results from core PS1906-1 are consistent with ice-free conditions during the LGM in the Norwegian Sea. The SST estimates for the LGM inferred from N. pachyderma shell size are similar or slightly higher than those for the latest Holocene. The results do not indicate anomalously high SST during the glacial and the LGM reconstructions thus appear more consistent with the results from foraminiferal transfer functions and geochemical proxies. Both sediment cores show the highest reconstructed SST during the early Holocene insolation optimum.
Resumo:
Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
Hemipelagic muds deposited during the past 5.3 cal kyr in the northern Gulf of Mexico (Orca Basin) contain seven intervals punctuated by relatively coarse siliciclastic grain-size peaks, planktonic faunal turnovers, and negative d13C excursions. We believe these episodes represent megaflood deposits reflecting historically unprecedented outfall of North American floodwater and terrigenous mud plumes into the gulf, resulting in collapse of the open-ocean pelagic ecosystem. The deposits record multidecadal episodes of high continental precipitation and large Mississippi River floods at ~4.7, 3.5, 3.0, 2.5, 2.0, 1.2, and 0.3 cal ka (500-1200-year recurrence interval). Variations in tropical plankton frequencies define submillenial warming intervals that culminate in these fluvial episodes. Strengthened tropical currents in the gulf at these times appear to have increased sea surface temperatures and associated flow of moist gulf air to the midwest. Terrestrial paleohydrologic records support the marine evidence for millennial-scale changes in recurrence of large midwest flood episodes.
Resumo:
Uncertainty information for global leaf area index (LAI) products is important for global modeling studies but usually difficult to systematically obtain at a global scale. Here, we present a new method that cross-validates existing global LAI products and produces consistent uncertainty information. The method is based on a triple collocation error model (TCEM) that assumes errors among LAI products are not correlated. Global monthly absolute and relative uncertainties, in 0.05° spatial resolutions, were generated for MODIS, CYCLOPES, and GLOBCARBON LAI products, with reasonable agreement in terms of spatial patterns and biome types. CYCLOPES shows the lowest absolute and relative uncertainties, followed by GLOBCARBON and MODIS. Grasses, crops, shrubs, and savannas usually have lower uncertainties than forests in association with the relatively larger forest LAI. With their densely vegetated canopies, tropical regions exhibit the highest absolute uncertainties but the lowest relative uncertainties, the latter of which tend to increase with higher latitudes. The estimated uncertainties of CYCLOPES generally meet the quality requirements (± 0.5) proposed by the Global Climate Observing System (GCOS), whereas for MODIS and GLOBCARBON only non-forest biome types have met the requirement. Nevertheless, none of the products seems to be within a relative uncertainty requirements of 20%. Further independent validation and comparative studies are expected to provide a fair assessment of uncertainties derived from TCEM. Overall, the proposed TCEM is straightforward and could be automated for the systematic processing of real time remote sensing observations to provide theoretical uncertainty information for a wider range of land products.
Resumo:
The present study examines sublethal effects of near-future (year 2100) ocean acidification (OA) on regenerative capacity, biochemical composition, and behavior of the sea star Luidia clathrata, a predominant predator in sub-tropical soft-bottom habitats. Two groups of sea stars, each with two arms excised, were maintained on a formulated diet in seawater bubbled with air alone (pH 8.2, approximating a pCO2 of 380 µatm) or with a controlled mixture of air/C02 (pH 7.8, approximating a pCO2 of 780 µatm). Arm length, total body wet weight, and righting responses were measured weekly. After 97 days, a period of time sufficient for 80% arm regeneration, pyloric caecal indices, and protein, carbohydrate, lipid, and ash levels were determined for body wall and pyloric caecal tissues of intact and regenerating arms of individuals held in both seawater pH treatments. The present study indicates that predicted near-term levels of ocean acidification (seawater pH 7.8) do not significantly impact whole animal growth, arm regeneration rates, biochemical composition, or righting behavior in this common soft bottom sea star.
Resumo:
Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.
Resumo:
We present measurements of the maximum diameter of the planktonic foraminifer Neogloboquadrina pachyderma sin. from six sediment cores (Ocean Drilling Program sites 643, 644, 907, 909, 985 and 987) from the Norwegian-Greenland Sea. Our data show a distinct net increase in mean shell size of N. pachyderma sin. at all sites during the last 1.3 Ma, with largest shell sizes reached after 0.4 Ma. External factors such as glacial-interglacial variability and carbonate dissolution alone cannot account for the observed variation in mean shell size of N. pachyderma sin. We consider the observed shell size increase to mirror an evolutionary trend towards better adaptation of N. pachyderma sin. to the cold water environment after 1.1-1.0 Ma. Probably, the Mid Pleistocene climate shift and the associated change of amplitude and frequency of glacial-interglacial fluctuations have triggered the evolution of this planktonic foraminifer. Oxygen and carbon stable isotope analyses of different shell size classes indicate that the observed shell size increase could not be explained by the functional concept that larger shells promote increasing sinking velocities during gametogenesis. For paleoceanographic reconstructions, the evolutionary adaptation of Neogloboquadrina pachyderma sin. to the cold water habitat has significant implications. Carbonate sedimentation in highest latitudes is highly dependent on the presence of this species. In the Norwegian-Greenland Sea, carbonate-poor intervals before 1.1 Ma are, therefore, not necessarily related to severe glacial conditions. They are probably attributed to the absence of this not yet polar-adapted species. Further, transfer function and modern analog techniques used for the reconstruction of surface water conditions in high latitudes could, therefore, contain a large range of errors if they were applied to samples older than 1.1-1.0 Myrs.
Resumo:
The influence of the large-scale ocean circulation on Sahel rainfall is elusive because of the shortness of the observational record. We reconstructed the history of eolian and fluvial sedimentation on the continental slope off Senegal during the past 57,000 years. Our data show that abrupt onsets of arid conditions in the West African Sahel were linked to cold North Atlantic sea surface temperatures during times of reduced meridional overturning circulation associated with Heinrich Stadials. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.
Resumo:
CaCO3 content was determined on board ship by the "Karbonat Bomb" technique (Müller and Gastner, 1971). In this simple procedure, a sample is powdered and treated with HCl in a closed cylinder. Any resulting CO2 pressure is proportional to the CaCO3 content of the sample. Application of the calibration factor to the manometer reading (x 100) yields per cent CaCO3. The error can be as low as 1 per cent for sediments high in CaCO3, and in general an accuracy of ±2 to 5 per cent can be obtained.