3 resultados para single-side large optical cavity

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally and numerically investigated the generation of plumes from a local heat source (LHS) and studied the interaction of these plumes with cellular convective motion (CCM) in a rectangular cavity filled with silicon oil at a Prandtl number (Pr) of approximately two thousand. The LHS is generated using a 0.2-W green laser beam. A roll-type CCM is generated by vertically heating one side of the cavity. The CCM may lead to the formation of an unusual spiral convective plume that resembles a vertical Archimedes spiral. A similar plume is obtained in a direct numerical simulation. We discuss the physical mechanism for the formation of a spiral plume and the application of the results to mantle convection problems. We also estimate the Reynolds (Re) and Rayleigh (Ra) numbers and apply self-similarity theory to convection in the Earth's mantle. Spiral plumes can be used to interpret mantle tomography results over the last decade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present differential bathymetry and sediment core data from the Japan Trench, sampled after the 2011 Tohoku-Oki (offshore Japan) earthquake to document that prominent bathymetric and structural changes along the trench axis relate to a large (~27.7 km**2) slump in the trench. Transient geochemical signals in the slump deposit and analysis of diffusive re-equilibration of disturbed SO4**2- profiles over time constrain the triggering of the slump to the 2011 earthquake. We propose a causal link between earthquake slip to the trench and rotational slumping above a subducting horst structure. We conclude that the earthquake-triggered slump is a leading agent for accretion of trench sediments into the forearc and hypothesize that forward growth of the prism and seaward advance of the deformation front by more than 2 km can occur, episodically, during a single-event, large mega-thrust earthquake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution geophysical and sediment core data are used to investigate the pattern and dynamics of former ice flow in Kvitøya Trough, northwestern Barents Sea. A new swath-bathymetric dataset identifies three types of submarine landform in the study area (streamlined landforms, meltwater channels and cavities, iceberg scours). Subglacially produced streamlined landforms provide a record of ice flow through Kvitøya Trough during the last glaciation. Flow directions are inferred from the orientations of streamlined landforms (drumlins, crag-and-tail features). Ice flowed northward for at least 135 km from an ice divide at the southern end of Kvitøya Trough. A large channel-cavity system incised into bedrock in the southern trough indicates that subglacial meltwater was present at the former ice-sheet base. Modest landform elongation ratios and a lack of mega-scale glacial lineations suggest that, although ice in Kvitøya Trough was melting at the bed and flowed faster than the likely thin and cold-based ice on adjacent banks, a major ice stream probably did not occupy the trough. Retreat was relatively rapid after 14-13.5 14C kyr B.P. and probably progressed via ice sheet-bed decoupling in response to rising sea level. There is little evidence for still stands during ice retreat or of ice-proximal deglacial sediments. Relict iceberg scours in present-day water depths of more than 350 m in the northern trough indicate that calving was an important mass loss mechanism during retreat.