393 resultados para shelf fronts

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ciliates from sub-surface waters of the Argentine shelf and the Drake Passage under austral summer and autumn conditions were examined and compared for the first time. In both environments, the taxonomic structure of ciliates was related to temperature and salinity, and aloricate oligotrichs dominated in density (80%) over loricate oligotrichs, litostomatids and prostomatids, while the microplanktonic fraction prevailed in terms of biomass (90%) over the nanociliates. Myrionecta rubra was found all along the Argentine shelf only in autumn, but showed isolated peaks of abundance (10**3 ind./L) during summer. Mean values of density and biomass of total ciliates decreased ca. 2-fold from the shelf-slope to oceanic waters, while potential maximum production of aloricate oligotrichs decreased 9-fold, in relation with the drop in chlorophyll a concentration and the latitudinal decline of temperature, also reflected in maximum growth rates. Fifty percent of total ciliate abundance was represented by local increases (maximum: 20 000 ind./L and 25 µg C/L), which were spatially superimposed with ranges of seawater temperature and chlorophyll a concentrations of 10-15°C and 0.6-6 µg/L, respectively and were found in the nearby of fronts located on the shelf and the slope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments from the Portuguese shelf are influenced by environmental changes in the surrounding continental and marine environment. These are largely controlled by the North Atlantic Oscillation, but additional impacts may arise from episodic tsunamis. In order to investigate these influences, a high resolution multi-proxy study has been carried out on a 5.4 m long gravity core and five box cores from the Tagus prodelta on the western Portuguese margin, incorporating geochemical (Corg/Ntotal ratios, d13Corg, d15N, d18O, Corg and CaCO3 content) and physical sediment properties (magnetic susceptibility, grain-size). Subsurface data of the five box cores indicate no major effect of early postdepositional alteration. Surface data show a higher fraction of terrigenous organic material close to the river mouth and in the southern prodelta. Gravity core GeoB 8903 covers the last 3.2 kyrs with a temporal resolution of at least 0.1 cm/yr. Very high sedimentation rates between 69 and 140 cm core depth indicate a possible disturbance of the record by the AD1755 tsunami, although no evidence for a disturbance is observed in the data. Sea surface temperature and salinity on the prodelta, the local budget of marine NO3- as well as the provenance of organic matter remained virtually constant during the past 3.2 kyrs. A positive correlation between magnetic susceptibility (MS) and North Atlantic Oscillation (NAO) is evident for the past 250 years, coinciding with a negative correlation between mean grain-size and NAO. This is assigned to a constant riverine supply of fine material with high MS, which is diluted by the riverine input of a coarser, low-MS component during NAO negative, high-precipitation phases. End-member modelling of the lithic grain-size spectrum supports this, revealing a third, coarse lithic component. The high abundance of this coarse end-member prior to 2 kyr BP is interpreted as the result of stronger bottom currents, concentrating the coarse sediment fraction by winnowing. As continental climate was more arid prior to 2 kyr BP (Subboreal), the coarse end-member may also consist of dust from local sources. A decrease in grain-size and CaCO3 content after 2 kyr BP is interpreted as a result of decreasing wind strength. The onset of a fining trend and a further decrease in CaCO3 around AD900 occurs simultaneous to climatic variations, reconstructed from eastern North Atlantic records. A strong increase in MS between AD1400 and AD1500 indicates higher lithic terrigenous input, caused by deforestation in the hinterland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amounts of aerosols transported to the shelf surface were calculated on the basis of in situ measurements of concentrations of eolian matter (insoluble aerosol fraction) and vertical fluxes of settling dust in five areas of the Black Sea shelf from the Danube delta to the Inguri River mouth. More than 8.3 mln t of eolian matter are annually transported from the land over the shelf of the former USSR. At the same time more than 5.4 mln t are supplied to the northwestern shelf area, 1.7 mln t are supplied to the Crimean area, about 0.8 mln t are supplied to the Kerch-Taman' area, and about 0.45 mln t are supplied to the Caucasian area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction in sea ice along the SE Greenland coast during the last century has severely impacted ice-rafting to this area. In order to reconstruct ice-rafting and oceanographic conditions in the area of Denmark Strait during the last ~150 years, we conducted a multiproxy study on three short (20 cm) sediment cores from outer Kangerdlugssuaq Trough (~300 m water depth). The proxy-based data obtained have been compared with historical and instrumental data to gain a better understanding of the ice sheet-ocean interactions in the area. A robust chronology has been developed based on 210Pb and 137Cs measurements on core PO175GKC#9 (~66.2°N, 32°W) and expanded to the two adjacent cores based on correlations between calcite weight percent records. Our proxy records include sea-ice and phytoplankton biomarkers, and a variety of mineralogical determinations based on the <2 mm sediment fraction, including identification with quantitative x-ray diffraction, ice-rafted debris counts on the 63-150 µm sand fraction, and source identifications based on the composition of Fe oxides in the 45-250 µm fraction. A multivariate statistical analysis indicated significant correlations between our proxy records and historical data, especially with the mean annual temperature data from Stykkishólmur (Iceland) and the storis index (historical observations of sea-ice export via the East Greenland Current). In particular, the biological proxies (calcite weight percent, IP25, and total organic carbon %) showed significant linkage with the storis index. Our records show two distinct intervals in the recent history of the SE Greenland coast. The first of these (ad 1850-1910) shows predominantly perennial sea-ice conditions in the area, while the second (ad 1910-1990) shows more seasonally open water conditions.