29 resultados para shapefile
em Publishing Network for Geoscientific
Resumo:
Glacier inventories provide the basis for further studies on mass balance and volume change, relevant for local hydrological issues as well as for global calculation of sea level rise. In this study, a new Austrian glacier inventory has been compiled, updating data from 1969 (GI 1) and 1998 (GI 2) based on high-resolution lidar digital elevation models (DEMs) and orthophotos dating from 2004 to 2012 (GI 3). To expand the time series of digital glacier inventories in the past, the glacier outlines of the Little Ice Age maximum state (LIA) have been digitalized based on the lidar DEM and orthophotos. The resulting glacier area for GI 3 of 415.11 ± 11.18 km**2 is 44% of the LIA area. The annual relative area losses are 0.3%/yr for the ~119-year period GI LIA to GI 1 with one period with major glacier advances in the 1920s. From GI 1 to GI 2 (29 years, one advance period of variable length in the 1980s) glacier area decreased by 0.6% yr?1 and from GI 2 to GI 3 (10 years, no advance period) by 1.2%/yr. Regional variability of the annual relative area loss is highest in the latest period, ranging from 0.3 to 6.19%/yr. The mean glacier size decreased from 0.69 km**2 (GI 1) to 0.46 km**2 (GI 3), with 47% of the glaciers being smaller than 0.1 km**2 in GI 3 (22%).
Resumo:
Reconstructing past landscapes from historical maps requires quantifying the accuracy and completeness of these sources. The accuracy and completeness of two historical maps of the same period covering the same area in Israel were examined: the 1:63,360 British Palestine Exploration Fund map (1871-1877) and the 1:100,000 French Levés en Galilée (LG) map (1870). These maps cover the mountainous area of the Galilee (northern Israel), a region with significant natural and topographical diversity, and a long history of human presence. Land-cover features from both maps, as well as the contours drawn on the LG map, were digitized. The overall correspondence between land-cover features shown on both maps was 59% and we found that the geo-referencing method employed (transformation type and source of control points) did not significantly affect these correspondence measures. Both maps show that in the 1870s, 35% of the Galilee was covered by Mediterranean maquis, with less than 8% of the area used for permanent agricultural cropland (e.g., plantations). This article presents how the reliability of the maps was assessed by using two spatial historical sources, and how land-cover classes that were mapped with lower certainty and completeness are identified. Some of the causes that led to observed differences between the maps, including mapping scale, time of year, and the interests of the surveyors, are also identified.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.
Resumo:
The Regab pockmark is a large cold seep area located 10 km north of the Congo deep sea channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, vestimentiferan tubeworm Escarpia southwardae, and vesicomyid clams Laubiericoncha chuni and Christineconcha regab. The pockmark was visited during the West African Cold Seeps (WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000-m**2 high-resolution videomosaic was constructed to map the most populated area and to describe the distribution of the dominant megafauna (mussels, tubeworms and clams). The results are compared with previous published works, which also included a videomosaic in the same area of the pockmark, based on images of the BIOZAIRE cruise in 2001. The 10-year variation of the faunal distribution is described and reveals that the visible abundance and distribution of the dominant megafaunal populations at Regab have not changed significantly, suggesting that the overall methane and sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and localized distribution changes in the clam community indicate that it is exposed to more transient fluxes than the other communities. Observations suggest that the main megafaunal aggregations at Regab are distributed around focused zones of high flux of methane-enriched fluids likely related to distinct smaller pockmark structures that compose the larger Regab pockmark. Although most results are consistent with the existing successional models for seep communities, some observations in the distribution of the Regab mussel population do not entirely fit into these models. This is likely due to the high heterogeneity of this site formed by the coalescence of several pockmarks. We hypothesize that the mussel distribution at Regab could also be controlled by the occurrence of zones of both intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane possibly limiting tubeworm colonization.
Resumo:
Permanent water bodies not only store dissolved CO2 but are essential for the maintenance of wetlands in their proximity. From the viewpoint of greenhouse gas (GHG) accounting wetland functions comprise sequestration of carbon under anaerobic conditions and methane release. The investigated area in central Siberia covers boreal and sub-arctic environments. Small inundated basins are abundant on the sub-arctic Taymir lowlands but also in parts of severe boreal climate where permafrost ice content is high and feature important freshwater ecosystems. Satellite radar imagery (ENVISAT ScanSAR), acquired in summer 2003 and 2004, has been used to derive open water surfaces with 150 m resolution, covering an area of approximately 3 Mkm**2. The open water surface maps were derived using a simple threshold-based classification method. The results were assessed with Russian forest inventory data, which includes detailed information about water bodies. The resulting classification has been further used to estimate the extent of tundra wetlands and to determine their importance for methane emissions. Tundra wetlands cover 7% (400,000 km**2) of the study region and methane emissions from hydromorphic soils are estimated to be 45,000 t/d for the Taymir peninsula.
Resumo:
This data set contains the inputs and the results of the REDD+ Policy Assessment Centre project (REDD-PAC) project (http://www.redd-pac.org), developed by a consortium of research institutes (IIASA, INPE, IPEA, UNEP-WCMC), supported by Germany's International Climate Initiative. Taking a new land use map of Brazil for 2000 as input, the research team used the global economic model GLOBIOM to project land use changes in Brazil up to 2050. Model projections show that Brazil has the potential to balance its goals of protecting the environment and becoming a major global producer of food and biofuels. The model results were taken into account by Brazilian decision-makers when developing the country's intended nationally determined contribution (INDC).