69 resultados para sequence diagram
em Publishing Network for Geoscientific
Resumo:
An example of cordierite-bearing gneiss that is part of a high-grade gneiss-migmatite sequence is described from the Hatch Plain in the Read Mountains of the Shackleton Range, Antarctica, for the first time. The cordierite-bearing rocks constitute the more melanosomic portions of the metatectic and migmatitic rocks that are associated with relict granulite facies rocks such as enderbitic granulite and enderbitic garnet granulite. The predominant mineral assemblage in the cordierite-bearing rocks is chemically homogeneous cordierite (XMg 0.61) and biotite (XMg 0.47), strongly zoned garnet (XMg 0.18-0.11), sillimanite, K-feldspar (Or81-94Ab5-18An0.6), plagioclase (An28), and quartz. Inclusions of sillimanite and biotite relics in both garnet and cordierite indicate that garnet and cordierite were produced by the coupled, discontinuous reaction biotite + sillimanite + quartz = cordierite + garnet + K-feldspar + H2O. Various garnet-biotite and garnet-cordierite geothermometers and sillimanite-quartz-plagioclase-garnet-cordierite geobarometers yield a continuous clockwise path in the P-T diagram. The P-T conditions for equilibrium between garnet core and cordierite and between garnet core and biotite during peak metamorphism and migmatization were estimated to be 690 °C at 5-6 kb. This was followed by cooling and unloading with continuously changing conditions down to 515 °C at 2-3 kb. This low-pressure re-equilibration correlates with the pressure conditions evaluated by SCHULZE (1989) for the widespread granitic gneisses of the Read Group in the Shackleton Range. The associated relict enderbitic granulites representing low-pressure type granulite (8 kb; 790 °C) are comparable to similar low-pressure granulites from the East Antarctic craton. They were either formed by under-accretion processes after collision (WELLS 1979, p. 217) or they are a product of remetamorphism at P-T conditions intermediate between granulite and amphibolite facies. A model of a multiple imbrication zone with crustal thickening (CUTHBERT et al. 1983) is discussed for the formation of the relict granulites of the central and eastern Read Mountains which show higher pressure conditions (8-12 kb, SCHULZE & OLESCH 1990), indicating a Proterozoic crustal thickness of at least 40 km.
Resumo:
We conducted a high-resolution study of a unique Holocene sequence of wind-blown sediments and buried soils in Southern Siberia, far from marine environment influences. This was accomplished in order to assess the difference between North Atlantic marine and in-land climate variations. Relative wind strength was determined by grain size analyses of different stratigraphic units. Petromagnetic measurements were performed to provide a proxy for the relative extent of pedogenesis. An age model for the sections was built using the radiocarbon dating method. The windy periods are associated with the absence of soil formation and relatively low values of frequency dependence of magnetic susceptibility (FD), which appeared to be a valuable quantitative marker of pedogenic activity. These events correspond to colder intervals which registered reduced solar modulation and sun spot number. Events, where wind strength was lower, are characterized by soil formation with high FD values. Spectral analysis of our results demonstrates periodic changes of 1500, 1000 and 500 years of relatively warm and cold intervals during the Holocene of Siberia. We presume that the 1000 and 500 year climatic cycles are driven by increased solar insolation reaching the Earth surface and amplified by other still controversial mechanisms. The 1500 year cycle associated with the North Atlantic circulation appears only in the Late Holocene. Three time periods - 8400-9300 years BP, 3600-5100 years BP, and the last ~250 years BP - correspond to both the highest sun spot number and the most developed soil horizons in the studied sections
Resumo:
Fiekers Busch is a wet alder wood close to Rinteln (southwest of Hannover/West Germany) existing there since about 6 000 or - at the most - 7 500 radiocarbon years. The sandy layers below the peaty sequence date from about 9 000 BP. The pollen diagram shows the basic trends of the postglacial vegetational development. Low pollen frequency and poor pollen preservation do , however, strongly restrict the possibilities to explain the peculiarities of the pollendiagram, especially the high pine and linden values.
Resumo:
The Ninetyeast Ridge lavas have Sr and Nd isotopic ratios intermediate between those of Indian Ocean MORBs and those of the very enriched Kerguelen hot spot. In an Nd-Sr isotope diagram, they also plot close to the fields of St. Paul Island lavas and of the early magmatism on Kerguelen Archipelago. The Ninetyeast Ridge lavas were generated by mixing among at least three components: a depleted, MORB-type component, such as the one erupted today on the Southeast Indian Ridge; a very enriched, high- Sr/ Sr, low-epsilon-Nd, OIB-type component (the Kerguelen hot spot); and an OIB-type component comparable to that sampled from the St. Paul (and Amsterdam) lavas. The Ninetyeast Ridge lavas show a typical Dupal anomaly signature and Pb, Sr, and Nd isotopic systematics indicate that the Kerguelen hot spot was involved in the ridge's formation as the Indian plate moved northward. The different sites cored during ODP Leg 121 show a trend in their isotopic compositions, from less radiogenic Pb/ Pb ratios and intermediate 87Sr/86Sr and 143Nd/**Nd ratios in the oldest lavas (Site 758) toward more radiogenic 206Pb/204Pb, higher epsilon-Nd, and lower 87Sr/86Sr values in the youngest lavas (Site 756). The lavas from Site 757 have 206Pb/204Pb ratios intermediate between those of the lavas from Sites 756 and 758 and higher 87Sr/86Sr and lower epsilon-Nd values. The relative proportions of the hot spot(s) and MORB component have evolved with time, reflecting differences of tectonic setting: the relative proportion of the Kerguelen hot spot component appears lower in the younger Site 756 lavas than in the older lavas from Sites 757 and 758. Site 756 coincides with the beginning of rifting at the Southeast Indian Ridge, about 43 Ma ago. The formation of the early Kerguelen Archipelago lavas may have drained most of the plume-derived material toward the Antarctic plate. Alternatively, the proximity of the spreading-ridge axis may account for the isotopic similarity of the Site 756 lavas to young lavas erupted on the Southeast Indian Ridge, from 33? to 37?S. The older lavas of Ninetyeast Ridge may have formed when the hot spot and ridge axis did not exactly coincide. The involvement of the third component, a St. Paul hot spot, in the genesis of the Ninetyeast Ridge lavas, especially for the Site 756 lavas, is clearly indicated by Sr, Pb, and Nd isotope systematics and also by trace element ratios. These data, together with those from the Kerguelen Plateau, indicate that the Kerguelen hot spot has been active more or less continuously in the South Indian Ocean for at least 115 Ma. This could indicate that the plume, and by inference the Dupal anomaly, is deep seated in origin.
Resumo:
Early Cretaceous volcanic rocks of the Mariisky sequence and Early Cenozoic extrusive-vent rocks of the Mary Cape are exposed at the most northwest of the Schmidt Peninsula, North Sakhalin. In chemical composition, all the rocks are subdivided into four groups. Three groups include volcanic rocks of the Mariisky sequence, which consists, from bottom to top, of calc-alkaline rocks, transitional calc-alkaline-tholeiite rocks, and incompatible element-depleted tholeiites. These rocks show subduction geochemical signatures and are considered as a fragment of the Moneron-Samarga island arc system. Trace-element modeling indicates their derivation through successive melting of a garnet-bearing mantle and garnet-free shallower mantle sources containing amphibole; pyroxene; and, possibly, spinel. The mixed subduction and intra-plate characteristics of the extrusive vent rocks of the Mary Cape attest to their formation in a transform continental margin setting.
Resumo:
High-resolution, multichannel seismic data collected across the Great Bahama Bank margin and the adjacent Straits of Florida indicate that the deposition of Neogene-Quaternary strata in this transect are controlled by two sedimentation mechanisms: (1) west-dipping layers of the platform margin, which are a product of sea-level-controlled, platform-derived downslope sedimentation; and (2) east- or north-dipping drift deposits in the basinal areas, which are deposited by ocean currents. These two sediment systems are active simultaneously and interfinger at the toe-of-slope. The prograding system consists of sigmoidal clinoforms that advanced the margin some 25 km into the Straits of Florida. The foresets of the clinoforms are approximately 600 m high with variable slope angles that steepen significantly in the Pleistocene section. The seismic facies of the prograding clinoforms on the slope is characterized by dominant, partly chaotic, cut-and-fill geometries caused by submarine canyons that are oriented downslope. In the basin axis, seismic geometries and facies document deposition from and by currents. Most impressive is an 800-m-thick drift deposit at the confluence of the Santaren Channel and the Straits of Florida. This "Santaren Drift" is slightly asymmetric, thinning to the north. The drift displays a highly coherent seismic facies characterized by a continuous succession of reflections, indicating very regular sedimentation. Leg 166 of the Ocean Drilling Program (ODP) drilled a transect of five deep holes between 2 and 30 km from the modern platform margin and retrieved the sediments from both the slope and basin systems. The Neogene slope sediments consist of peri-platform oozes intercalated with turbidites, whereas the basinal drift deposits consist of more homogeneous, fine-grained carbonates that were deposited without major hiatuses by the Florida Current starting at approximately 12.4 Ma. Sea-level fluctuations, which controlled the carbonate production on Great Bahama Bank by repeated exposure of the platform top, controlled lithologic alternations and hiatuses in sedimentation across the transect. Both sedimentary systems are contained in 17 seismic sequences that were identified in the Neogene-Quaternary section. Seismic sequence boundaries were identified based on geometric unconformities beneath the Great Bahama Bank. All the sequence boundaries could be traced across the entire transect into the Straits of Florida. Biostratigraphic age determinations of seismic reflections indicate that the seismic reflections of sequence boundaries have chronostratigraphic significance across both depositional environments.
Resumo:
The Schwalbenberg II loess-paleosol sequence (LPS) denotes a key site for Marine Isotope Stage (MIS 3) in Western Europe owing to eight succeeding cambisols, which primarily constitute the Ahrgau Subformation. Therefore, this LPS qualifies as a test candidate for the potential of temporal high-resolution geochemical data obtained X-ray fluorescence (XRF) scanning of discrete samplesproviding a fast and non-destructive tool for determining the element composition. The geochemical data is first contextualized to existing proxy data such as magnetic susceptibility (MS) and organic carbon (Corg) and then aggregated to element log ratios characteristic for weathering intensity [LOG (Ca/Sr), LOG (Rb/Sr), LOG (Ba/Sr), LOG (Rb/K)] and dust provenance [LOG (Ti/Zr), LOG (Ti/Al), LOG (Si/Al)]. Generally, an interpretation of rock magnetic particles is challenged in western Europe, where not only magnetic enhancement but also depletion plays a role. Our data indicates leaching and top-soil erosion induced MS depletion at the Schwalbenberg II LPS. Besides weathering, LOG (Ca/Sr) is susceptible for secondary calcification. Thus, also LOG (Rb/Sr) and LOG (Ba/Sr) are shown to be influenced by calcification dynamics. Consequently, LOG (Rb/K) seems to be the most suitable weathering index identifying the Sinzig Soils S1 and S2 as the most pronounced paleosols for this site. Sinzig Soil S3 is enclosed by gelic gleysols and in contrast to S1 and S2 only initially weathered pointing to colder climate conditions. Also the Remagen Soils are characterized by subtle to moderate positive excursions in the weathering indices. Comparing the Schwalbenberg II LPS with the nearby Eifel Lake Sediment Archive (ELSA) and other more distant German, Austrian and Czech LPS while discussing time and climate as limiting factors for pedogenesis, we suggest that the lithologically determined paleosols are in-situ soil formations. The provenance indices document a Zr-enrichment at the transition from the Ahrgau to the Hesbaye Subformation. This is explained by a conceptual model incorporating multiple sediment recycling and sorting effects in eolian and fluvial domains.
Resumo:
Stubacher Sonnblickkees (SSK) is located in the Hohe Tauern Range (Eastern Alps) in the south of Salzburg Province (Austria) in the region of Oberpinzgau in the upper Stubach Valley. The glacier is situated at the main Alpine crest and faces east, starting at elevations close to 3050 m and in the 1980s terminated at 2500 m a.s.l. It had an area of 1.7 km² at that time, compared with 1 km² in 2013. The glacier type can be classified as a slope glacier, i.e. the relief is covered by a relatively thin ice sheet and there is no regular glacier tongue. The rough subglacial topography makes for a complex shape in the surface topography, with various concave and convex patterns. The main reason for selecting this glacier for mass balance observations (as early as 1963) was to verify on a complex glacier how the mass balance methods and the conclusions - derived during the more or less pioneer phase of glaciological investigations in the 1950s and 1960s - could be applied to the SSK glacier. The decision was influenced by the fact that close to the SSK there was the Rudolfshütte, a hostel of the Austrian Alpine Club (OeAV), newly constructed in the 1950s to replace the old hut dating from 1874. The new Alpenhotel Rudolfshütte, which was run by the Slupetzky family from 1958 to 1970, was the base station for the long-term observation; the cable car to Rudolfshütte, operated by the Austrian Federal Railways (ÖBB), was a logistic advantage. Another factor for choosing SSK as a glaciological research site was the availability of discharge records of the catchment area from the Austrian Federal Railways who had turned the nearby lake Weißsee ('White Lake') - a former natural lake - into a reservoir for their hydroelectric power plants. In terms of regional climatic differences between the Central Alps in Tyrol and those of the Hohe Tauern, the latter experienced significantly higher precipitation , so one could expect new insights in the different response of the two glaciers SSK and Hintereisferner (Ötztal Alps) - where a mass balance series went back to 1952. In 1966 another mass balance series with an additional focus on runoff recordings was initiated at Vernagtfener, near Hintereisferner, by the Commission of the Bavarian Academy of Sciences in Munich. The usual and necessary link to climate and climate change was given by a newly founded weather station (by Heinz and Werner Slupetzky) at the Rudolfshütte in 1961, which ran until 1967. Along with an extension and enlargement to the so-called Alpine Center Rudolfshütte of the OeAV, a climate observatory (suggested by Heinz Slupetzky) has been operating without interruption since 1980 under the responsibility of ZAMG and the Hydrological Service of Salzburg, providing long-term met observations. The weather station is supported by the Berghotel Rudolfshütte (in 2004 the OeAV sold the hotel to a private owner) with accommodation and facilities. Direct yearly mass balance measurements were started in 1963, first for 3 years as part of a thesis project. In 1965 the project was incorporated into the Austrian glacier measurement sites within the International Hydrological Decade (IHD) 1965 - 1974 and was afterwards extended via the International Hydrological Program (IHP) 1975 - 1981. During both periods the main financial support came from the Hydrological Survey of Austria. After 1981 funds were provided by the Hydrological Service of the Federal Government of Salzburg. The research was conducted from 1965 onwards by Heinz Slupetzky from the (former) Department of Geography of the University of Salzburg. These activities received better recognition when the High Alpine Research Station of the University of Salzburg was founded in 1982 and brought in additional funding from the University. With recent changes concerning Rudolfshütte, however, it became unfeasible to keep the research station going. Fortunately, at least the weather station at Rudolfshütte is still operating. In the pioneer years of the mass balance recordings at SSK, the main goal was to understand the influence of the complicated topography on the ablation and accumulation processes. With frequent strong southerly winds (foehn) on the one hand, and precipitation coming in with storms from the north to northwest, the snow drift is an important factor on the undulating glacier surface. This results in less snow cover in convex zones and in more or a maximum accumulation in concave or flat areas. As a consequence of the accentuated topography, certain characteristic ablation and accumulation patterns can be observed during the summer season every year, which have been regularly observed for many decades . The process of snow depletion (Ausaperung) runs through a series of stages (described by the AAR) every year. The sequence of stages until the end of the ablation season depends on the weather conditions in a balance year. One needs a strong negative mass balance year at the beginning of glacier measurements to find out the regularities; 1965, the second year of observation resulted in a very positive mass balance with very little ablation but heavy accumulation. To date it is the year with the absolute maximum positive balance in the entire mass balance series since 1959, probably since 1950. The highly complex ablation patterns required a high number of ablation stakes at the beginning of the research and it took several years to develop a clearer idea of the necessary density of measurement points to ensure high accuracy. A great number of snow pits and probing profiles (and additional measurements at crevasses) were necessary to map the accumulation area/patterns. Mapping the snow depletion, especially at the end of the ablation season, which coincides with the equilibrium line, is one of the main basic data for drawing contour lines of mass balance and to calculate the total mass balance (on a regular-shaped valley glacier there might be an equilibrium line following a contour line of elevation separating the accumulation area and the ablation area, but not at SSK). - An example: in 1969/70, 54 ablation stakes and 22 snow pits were used on the 1.77 km² glacier surface. In the course of the study the consistency of the accumulation and ablation patterns could be used to reduce the number of measurement points. - At the SSK the stratigraphic system, i.e. the natural balance year, is used instead the usual hydrological year. From 1964 to 1981, the yearly mass balance was calculated by direct measurements. Based on these records of 17 years, a regression analysis between the specific net mass balance and the ratio of ablation area to total area (AAR) has been used since then. The basic requirement was mapping the maximum snow depletion at the end of each balance year. There was the advantage of Heinz Slupetzky's detailed local and long-term experience, which ensured homogeneity of the series on individual influences of the mass balance calculations. Verifications took place as often as possible by means of independent geodetic methods, i.e. monoplotting , aerial and terrestrial photogrammetry, more recently also the application of PHOTOMODELLER and laser scans. The semi-direct mass balance determinations used at SSK were tentatively compared with data from periods of mass/volume change, resulting in promising first results on the reliability of the method. In recent years re-analyses of the mass balance series have been conducted by the World Glacier Monitoring Service and will be done at SSK too. - The methods developed at SSK also add to another objective, much discussed in the 1960s within the community, namely to achieve time- and labour-saving methods to ensure continuation of long-term mass balance series. The regression relations were used to extrapolate the mass balance series back to 1959, the maximum depletion could be reconstructed by means of photographs for those years. R. Günther (1982) calculated the mass balance series of SSK back to 1950 by analysing the correlation between meteorological data and the mass balance; he found a high statistical relation between measured and determined mass balance figures for SSK. In spite of the complex glacier topography, interesting empirical experiences were gained from the mass balance data sets, giving a better understanding of the characteristics of the glacier type, mass balance and mass exchange. It turned out that there are distinct relations between the specific net balance, net accumulation (defined as Bc/S) and net ablation (Ba/S) to the AAR, resulting in characteristic so-called 'turnover curves'. The diagram of SSK represents the type of a glacier without a glacier tongue. Between 1964 and 1966, a basic method was developed, starting from the idea that instead of measuring years to cover the range between extreme positive and extreme negative yearly balances one could record the AAR/snow depletion/Ausaperung during one or two summers. The new method was applied on Cathedral Massif Glacier, a cirque glacier with the same area as the Stubacher Sonnblickkees, in British Columbia, Canada. during the summers of 1977 and 1978. It returned exactly the expected relations, e.g. mass turnover curves, as found on SSK. The SSK was mapped several times on a scale of 1:5000 to 1:10000. Length variations have been measured since 1960 within the OeAV glacier length measurement programme. Between 1965 and 1981, there was a mass gain of 10 million cubic metres. With a time lag of 10 years, this resulted in an advance until the mid-1980s. Since 1982 there has been a distinct mass loss of 35 million cubic metres by 2013. In recent years, the glacier has disintegrated faster, forced by the formation of a periglacial lake at the glacier terminus and also by the outcrops of rocks (typical for the slope glacier type), which have accelerated the meltdown. The formation of this lake is well documented. The glacier has retreated by some 600 m since 1981. - Since August 2002, a runoff gauge installed by the Hydrographical Service of Salzburg has recorded the discharge of the main part of SSK at the outlet of the new Unterer Eisboden See. The annual reports - submitted from 1982 on as a contractual obligation to the Hydrological Service of Salzburg - document the ongoing processes on the one hand, and emphasize the mass balance of SSK and outline the climatological reasons, mainly based on the met-data of the observatory Rudolfshütte, on the other. There is an additional focus on estimating the annual water balance in the catchment area of the lake. There are certain preconditions for the water balance equation in the area. Runoff is recorded by the ÖBB power stations, the mass balance of the now approx. 20% glaciated area (mainly the Sonnblickkees) is measured andthe change of the snow and firn patches/the water content is estimated as well as possible. (Nowadays laserscanning and ground radar are available to measure the snow pack). There is a net of three precipitation gauges plus the recordings at Rudolfshütte. The evaporation is of minor importance. The long-term annual mean runoff depth in the catchment area is around 3.000 mm/year. The precipitation gauges have measured deficits between 10% and 35%, on average probably 25% to 30%. That means that the real precipitation in the catchment area Weißsee (at elevations between 2,250 and 3,000 m) is in an order of 3,200 to 3,400 mm a year. The mass balance record of SSK was the first one established in the Hohe Tauern region (and now since the Hohe Tauern National Park was founded in 1983 in Salzburg) and is one of the longest measurement series worldwide. Great efforts are under way to continue the series, to safeguard against interruption and to guarantee a long-term monitoring of the mass balance and volume change of SSK (until the glacier is completely gone, which seems to be realistic in the near future as a result of the ongoing global warming). Heinz Slupetzky, March 2014
Resumo:
Mineralogical and geochemical analyses of alteration products from upper and lower volcanic series recovered during ODP Leg 104 reveal variations both in composition and order of crystallization of clay minerals vesicles and voids filling and replacing glass. These results provide information about successive alteration stages of rocks and interlayered volcaniclastic sediments. The first stage, related to initial basalt-seawater interaction, is characterized by development of Fe-smectites, especially Fe-rich saponite. A second stage of intermittently superimposed subaerial weathering is marked by iron-oxides-halloysite-kaolinite formation. The third episode, interpreted as hydrothermal on the basis of O-isotopic data, is defined by postburial coprecipitation of Fe-poor, Mg-rich saponite and celadonite. A distinct final and pervasive hydrothermal stage, occurring mainly in the lower series and dominated by Al-smectites-zeolites assemblage, indicates changes toward a more reducing alteration environment.