787 resultados para separated shear layer
em Publishing Network for Geoscientific
Resumo:
A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.
Resumo:
Compressional (Vp) and shear (Vs) wave velocities have been measured to 1.0 kbar for 14 cores of well-consolidated sedimentary rock from Atlantic and Pacific sites of the Deep Sea Drilling Project. The range of VP (2.05-5.38 km/sec at 0.5 kbar) shows significant overlap with the range of oceanic layer-2 seismic velocities determined by marine refraction surveys, suggesting that sedimentary rocks may, in some regions, constitute the upper portion of layer 2. Differing linear relationships between VP and Vs for basalts and sedimentary rocks, however, may provide a method of resolving layer-2 composition. This is illustra ted for a refraction survey site on the flank of the Mid-Atlantic Ridge where layer-2 velocities agree with basalt, and two sites on the Saya de Malha Bank in the Indian Ocean where layer-2 velocities appear to represent sedimentary rock.
Resumo:
Shear-wave and compressional-wave velocities of 26 basalt samples collected at Site 504 during Deep Sea Drilling Project Legs 69 and 70 were measured at elevated confining pressures. The young basalts have higher velocities than average DSDP basalts, because of their lack of alteration. Measurements of sample porosity are combined with laboratory and in situ velocity measurements to yield estimates of total crustal porosity: 13% at the top of Layer 2, and very low porosity below a depth of 2.0 km.
(Table 1) Compressional and shear wave velocities and elastic constants of DSDP Hole 83-504B basalts
Resumo:
Compressional and shear wave velocities at confining pressures to 6 kb, densities, and porosities were measured for 32 samples obtained from 836 to 1350 m below seafloor (BSF) in Hole 504B, the section drilled on Leg 83 of the Deep Sea Drilling Project. These data in combination with similar measurements on 28 basalt samples from the section from 274.5 to 836 m, drilled on Legs 69 and 70, provide a comprehensive set of physical property data for over 1000 m of oceanic crust. The velocities, densities, and porosities measured in the laboratory exhibit greater variability in the upper portion of the hole. In general, compressional and shear wave velocities and densities increase with depth, reaching average values at 1 kbar of Vp = 6.45 km/s, Ks = 3.45 km/s and p = 2.94 g/cm3 within the sheeted dike section. Porosities decrease with depth to values generally less than 1% near the bottom of the hole