6 resultados para semi-dwarf and dwarf wheat plants

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined near-surface, late Holocene deep-sea sediments at nine sites on a north-south transect from the Congo Fan (4°S) to the Cape Basin (30°S) along the Southwest African continental margin. Contents, distribution patterns and molecular stable carbon isotope signatures of long-chain n-alkanes (C27-C33) and n-alkanols (C22-C32) are indicators of land plant vegetation of different biosynthetic types, which can be correlated with concentrations and distributions of pollen taxa in the same sediments. Calculated clusters of wind trajectories and satellite Aerosol Index imagery afford information on the source areas for the lipids and pollen on land and their transport pathways to the ocean sites. This multidisciplinary approach on an almost continental scale provides clear evidence of latitudinal differences in lipid and pollen composition paralleling the major phytogeographic zonations on the adjacent continent. Dust and smoke aerosols are mainly derived from the western and central South African hinterland dominated by deserts, semi-deserts and savannah regions rich in C4 and CAM plants. The northern sites (Congo Fan area and northern Angola Basin), which get most of their terrestrial material from the Congo Basin and the Angolan highlands, may also receive some material from the Chad region. Very little aerosol from the African continent is transported to the most southerly sites in the Cape Basin. As can be expected from the present position of the phytogeographic zones, the carbon isotopic signatures of the n-alkanes and n-alkanols both become isotopically more enriched in 13C from north to south. The results of the study suggest that this combination of pollen data and compound-specific isotope geochemical proxies can be effectively applied in the reconstruction of past continental phytogeographic developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rising atmospheric CO2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO2 world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to reconstruct pathways of terrigenous input to the oceans and provides a record of vegetation change on adjacent continents. The wind transport routes of aeolian pollen is comprehensively illustrated by clusters of trajectories. Isobaric, 4-day backward trajectories are calculated using the modelled wind-field of ECHAM3, and are clustered on a seasonal basis to estimate the main pathways of aeolian particles to sites of marine cores in the south-eastern Atlantic. Trajectories and clusters based on the modelled wind-field of the Last Glacial Maximum hardly differ from those of the present-day. Trajectory clusters show three regional, and two seasonal patterns, determining the pathways of aeolian pollen transport into the south-eastern Atlantic ocean. Mainly, transport out of the continent occurs during austral fall and winter, when easterly and south-easterly winds prevail. South of 25°S, winds blow mostly from the west and southwest, and aeolian terrestrial input is very low. Generally, a good latitudinal correspondence exists between the distribution patterns of pollen in marine surface sediments and the occurrence of the source plants on the adjacent continent. The northern Angola Basin receives pollen and spores from the Congolian and Zambezian forests mainly through river discharge. The Zambezian vegetation zone is the main source area for wind-blown pollen in sediments of the Angola Basin, while the semi-desert and desert areas are the main sources for pollen in sediments of the Walvis Basin and on the Walvis Ridge. A transect of six marine pollen records along the south-western African coast indicates considerable changes in the vegetation of southern Africa between glacial and interglacial periods. Important changes in the vegetation are the decline of forests in equatorial Africa and the north of southern Africa and a northward shift of winter rain vegetation along the western escarpment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study projects land cover probabilities under climate change for corn (maize), soybeans, spring and winter wheat, winter wheat-soybean double cropping, cotton, grassland and forest across 16 central U.S. states at a high spatial resolution, while also taking into account the influence of soil characteristics and topography. The scenarios span three oceanic-atmospheric global circulation models, three Representative Concentration Pathways, and three time periods (2040, 2070, 2100). As climate change intensifies, the suitable area for all six crops display large northward shifts. Total suitable area for spring wheat, followed by corn and soybeans, diminish. Suitable area for winter wheat and for winter wheat-soybean double-cropping expand northward, while cotton suitability migrates to new, more northerly, locations. Suitability for forest intensifies in the south while yielding to crops in the north; grassland intensifies in the western Great Plains as crop suitability diminishes. To maintain current broad geographic patterns of land use, large changes in the thermal response of crops such as corn would be required. A transition from corn-soybean to winter wheat-soybean doubling cropping is an alternative adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide deep geological storage, especially in deep saline aquifers, is one of the preferred technological options to mitigate the effects of greenhouse gases emissions. Thus, in the last decade, studies characterising the behaviour of potential CO2 deep geological storage sites along with thorough safety assessments have been considered essential in order to minimise the risks associated with these sites. The study of natural analogues represents the best source of reliable information about the expected hydrogeochemical processes involved in the CO2 storage in such deep saline aquifers. In this work, a comprehensive study of the hydrogeochemical features and processes taking place at the natural analogue of the Alicún de las Torres thermal system (Betic Cordillera) has been conducted. Thus, the main water/CO2/rock interaction processes occurring at the thermal system have been identified, quantified and modelled, and a principle conclusion is that the hydrogeochemical evolution of the thermal system is controlled by a global dedolomitization process triggered by gypsum dissolution. This geochemical process generates a different geochemical environment to that which would result from the exclusive dissolution of carbonates from the deep aquifer, which is generally considered as the direct result of CO2 injection in a deep carbonate aquifer. Therefore, discounting of the dedolomitization process in any CO2 deep geological storage may lead to erroneous conclusions. This process will also influence the porosity evolution of the CO2 storage formation, which is a very relevant parameter when evaluating a reservoir for CO2 storage. The geothermometric calculation performed in this work leads to estimate that the thermal water reservoir is located between 650 and 800 m depth, which is very close to the minimum required to inject CO2 in a deep geological storage. It is clear that the proper characterisation of the features and hydrogeochemical processes taking place at a natural system analogous to a man-made deep geological storage will provide useful conceptual, semi-quantitative and even quantitative information about the processes and consequences that may occur at the artificial storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic matter origins are inferred from carbon isotope ratios (delta13C) in recent continental shelf sediments and major rivers from 465 locations from the north Bering-Chukchi-East Siberian-Beaufort Sea, Arctic Amerasia. Generally, there is a cross-shelf increase in delta13C, which is due to progressive increased contribution seaward of marine-derived organic carbon to surface sediments. This conclusion is supported by the correlations between sediment delta13C, OC/N, and delta15N. The sources of total organic carbon (TOC) to the Amerasian margin sediments are primarily from marine water-column phytoplankton and terrigenous C3 plants constituted of tundra taiga and angiosperms. In contrast to more temperate regions, the source of TOC from terrigenous C4 and CAM plants to the study area is probably insignificant because these plants do not exist in the northern high latitudes. The input of carbon to the northern Alaskan shelf sediments from nearshore kelp community (Laminaria solidungula) is generally insignificant as indicated by the absence of high sediment delta13C values (-16.5 to -13.6 per mil) which are typical of the macrophytes. Our study suggests that the isotopic composition of sediment TOC has potential application in reconstructing temporal changes in delivery and accumulation of organic matter resulting from glacial-interglacial changes in sea level and environments. Furthermore, recycling and advection of the extensive deposits of terrestrially derived organic matter from land, or the wide Amerasian margin, could be a mechanism for elevating total CO2 and pCO2 in the Arctic Basin halocline.