3 resultados para salinization and basification

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This salinization simulation enables irrigation salinity, capillary rise, rainfall, leaching, salt mitigation strategies via fallowing, and other functions that are addressed in a coupled social-environment model applied to southern Mesopotamia. The simulation is applied to the Modeling Ancient Settlement Systems Project supported by the University of Chicago, Durham University, and Argonne National Laboratory. The simulation can be used for other regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This computational model of irrigation agriculture is used to study the effects of salinization in Mesopotamia. Scholars have long suspected that central and southern Mesopotamia present environments which limited agricultural production over long-term periods. In regions such as central Mesopotamia, where salinization likely affected settlement in different periods but was more manageable than in more southern regions, fallowing regimes, natural and engineered leaching, and decisions made on when to crop were strategies applied in order to limit the effects of salinization. The model is used to assess the effectiveness of these coping strategies by incorporating projected climate, soil, and landscape conditions with agricultural practices. The simulation results not only demonstrate the effectiveness and limitations of techniques to inhibiting progressive salinization but can be compared with the archaeological record in order to determine if the results correspond to past events and help to interpret past settlement history.