116 resultados para runoff erosivity parameter

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic hydrological cycle throughout the Holocene is analyzed based on the results of transient simulations with the coupled atmosphere-ocean circulation model ECHO-G. The results suggest a ~ 2 % increase of mid-Holocene to preindustrial Arctic river discharges for the Eurasian continent. However, rivers of the North America Arctic realm show a moderate runoff decline of approximately 4 to 5 % for the same period. The total river discharge into the Arctic Ocean has remained at an approximately constant preindustrial level since the mid Holocene. The positive discharge trend within Eurasia is caused by a more rapid decrease in local net evaporation compared to a smaller decline in advected moisture and hence precipitation. This effect is neither recognized within the North American Arctic domain nor in the far eastern part of the Eurasian Arctic realm. A detailed comparison of these model findings with a variety of proxy studies is conducted. The collected proxy records show trends of continental surface temperatures and precipitation rates that are consistent with the simulations. A continuation of the transient Holocene runs for the 19th and 20th century with increased greenhouse gases indicates an increase of the total river influx into the Arctic Ocean of up to 7.6 %. The Eurasian river discharges increase by 7.5 %, the North American discharges by up to 8.4 %. The most rapid increases have been detected since the beginning of the 20th century. These results are corroborated by the observed rising of Arctic river discharges during the last century which is attributed to anthropogenic warming. The acceleration of the Arctic hydrological cycle in the 20th century is without precedence in the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiparameter investigation including organic carbon, carbonate, opal, and planktic foraminifera was carried out on five sediment cores from the coastal upwelling area between 24°S and 33°S along the Peru-Chile Current to reconstruct the history of the paleoproductivity and its driving mechanisms during the last 40,000 years. Inferred from our data, we conclude that the Antarctic Circumpolar Current as the main nutrient source in this region mainly drives the productivity by its latitudinal shifts associated with climate change. Simplified, its northerly position during the last glacial led to enhanced productivities, and its southerly position during the Holocene caused lower productivities. At 33°S the paleoproductivity was additionally affected by the southern westerlies and records highest levels during the Last Glacial Maximum (LGM). North of 33°S, several factors (e.g., position and strength of the South Pacific anticyclone, wind stress, continental runoff, and El Niño Southern Oscillation events) supplementary influenced upwelling and paleoproductivity, where maximum values occurred prior to the LGM and during the deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use interferometric synthetic aperture radar observations recorded in a land-terminating sector of western Greenland to characterise the ice sheet surface hydrology and to quantify spatial variations in the seasonality of ice sheet flow. Our data reveal a non-uniform pattern of late-summer ice speedup that, in places, extends over 100 km inland. We show that the degree of late-summer speedup is positively correlated with modelled runoff within the 10 glacier catchments of our survey, and that the pattern of late-summer speedup follows that of water routed at the ice sheet surface. In late-summer, ice within the largest catchment flows on average 48% faster than during winter, whereas changes in smaller catchments are less pronounced. Our observations show that the routing of seasonal runoff at the ice sheet surface plays an important role in shaping the magnitude and extent of seasonal ice sheet speedup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated 'drivers' (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups' dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine resources of the region.