17 resultados para rumen microbial colonization

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aimed to explore evaluated the effects of the increased of hydrostatic pressure on a defined bacterial community on aggregates formed from an axenic culture of marine diatoms by simulating sedimentation to the deep sea by increase of hydrostatic pressure up to 30 bar (equivalent to 3000 m water depth) against control at ambient surface pressure. Our hypothesis was that microbial colonization and community composition and thus microbial OM turnover is greatly affected by changes in hydrostatic pressure during sinking to the deep ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Living microorganisms inhabit every environment of the biosphere but only in the last decades their importance governing biochemical cycles in deep sediments has been widely recognized. Most investigations have been accomplished in the marine realm whereas there is a clear paucity of comparable studies in lacustrine sediments. One of the main challenges is to define geomicrobiological proxies that can be used to identify different microbial signals in the sediments. Laguna Potrok Aike, a maar lake located in Southeastern Patagonia, has an annually not stratifying cold water column with temperatures ranging between 4 and 10 °C, and most probably an anoxic water/sediment interface. These unusual features make it a peculiar and interesting site for geomicrobiological studies. Living microbial activity within the sediments was inspected by the first time in a sedimentary core retrieved during an ICDP-sponsored drilling operation. The main goals to study this cold subsaline environment were to characterize the living microbial consortium; to detect early diagenetic signals triggered by active microbes; and to investigate plausible links between climate and microbial populations. Results from a meter long gravity core suggest that microbial activity in lacustrine sediments can be sustained deeper than previously thought due to their adaptation to both changing temperature and oxygen availability. A multi-proxy study of the same core allowed defining past water column conditions and further microbial reworking of the organic fraction within the sediments. Methane content shows a gradual increase with depth as a result of the fermentation of methylated substrates, first methanogenic pathway to take place in the shallow subsurface of freshwater and subsaline environments. Statistical analyses of DGGE microbial diversity profiles indicate four clusters for Bacteria reflecting layered communities linked to the oxidant type whereas three clusters characterize Archaea communities that can be linked to both denitrifiers and methanogens. Independent sedimentary and biological proxies suggest that organic matter production and/or preservation have been lower during the Medieval Climate Anomaly (MCA) coinciding with a low microbial colonization of the sediments. Conversely, a reversed trend with higher organic matter content and substantial microbial activity characterizes the sediments deposited during the Little Ice Age (LIA). Thus, the initial sediments deposited during distinctive time intervals under contrasting environmental conditions have to be taken into account to understand their impact on the development of microbial communities throughout the sediments and their further imprint on early diagenetic signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be "inherited" from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hidden for the untrained eye through a thin layer of sand, laminated microbial sediments occur in supratidal beaches along the North Sea coast. The inhabiting microbial communities organize themselves in response to vertical gradients of light, oxygen or sulfur compounds. We performed a fine-scale investigation on the vertical zonation of the microbial communities using a lipid biomarker approach, and assessed the biogeochemical processes using a combination of microsensor measurements and a 13C-labeling experiment. Lipid biomarker fingerprinting showed the overarching importance of cyanobacteria and diatoms in these systems, and heterocyst glycolipids revealed the presence of diazotrophic cyanobacteria even in 9 to 20 mm depth. High abundance of ornithine lipids (OL) throughout the system may derive from sulfate reducing bacteria, while a characteristic OL profile between 5 and 8 mm may indicate presence of purple non-sulfur bacteria. The fate of 13C-labeled bicarbonate was followed by experimentally investigating the uptake into microbial lipids, revealing an overarching importance of cyanobacteria for carbon fixation. However, in deeper layers, uptake into purple sulfur bacteria was evident, and a close microbial coupling could be shown by uptake of label into lipids of sulfate reducing bacteria in the deepest layer. Microsensor measurements in sediment cores collected at a later time point revealed the same general pattern as the biomarker analysis and the labeling experiments. Oxygen and pH-microsensor profiles showed active photosynthesis in the top layer. The sulfide that diffuses from deeper down and decreases just below the layer of active oxygenic photosynthesis indicates the presence of sulfur bacteria, like anoxygenic phototrophs that use sulfide instead of water for photosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using peridotite drilled during Ocean Drilling Program Leg 209, a series of enrichment cultures were initiated on board the ship to stimulate microbially enhanced dissolution of olivine. Dissolution was estimated by measured changes in dissolved Li and Si in the media through time (up to 709 days). The results suggest that there was no significant difference between the amounts of dissolved Li and Si in most of the inoculated microbial cultures compared to the control cultures. Alternative explanations for this are that 1. No microbes are living in the culture tubes that can affect the dissolution rates of olivine, 2. The control cultures have microbes effecting the dissolution of olivine as well as the inoculated cultures, 3. Not enough time has passed to build up a large enough microbial population to effect the dissolution of the olivine in the culture tubes, 4. Microbes act to suppress dissolution of olivine instead of enhancing dissolution, and 5. Abiotic dissolution overshadows microbially enhanced dissolution. Further work is required to test these alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with 13C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed 13C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C19:0 fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC19:0 and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their 13C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of 13C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on combined microsensor measurements of irradiance, temperature and O2, we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, < 1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.