6 resultados para root-shoot ratio
em Publishing Network for Geoscientific
Resumo:
The Tibetan highlands host the largest alpine grassland ecosystems worldwide, bearing soils that store substantial stocks of carbon (C) that are very sensitive to land use changes. This study focuses on the cycling of photoassimilated C within a Kobresia pygmaea pasture, the dominating ecosystems on the Tibetan highlands. We investigated short-term effects of grazing cessation and the role of the characteristic Kobresia root turf on C fluxes and belowground C turnover. By combining eddy-covariance measurements with 13CO2 pulse labeling we applied a powerful new approach to measure absolute fluxes of assimilates within and between various pools of the plant-soil-atmosphere system. The roots and soil each store roughly 50% of the overall C in the system (76 Mg C/ha), with only a minor contribution from shoots, which is also expressed in the root:shoot ratio of 90. During June and July the pasture acted as a weak C sink with a strong uptake of approximately 2 g C/m**2/ in the first half of July. The root turf was the main compartment for the turnover of photoassimilates, with a subset of highly dynamic roots (mean residence time 20 days), and plays a key role for the C cycling and C storage in this ecosystem. The short-term grazing cessation only affected aboveground biomass but not ecosystem scale C exchange or assimilate allocation into roots and soil.
Resumo:
This data set describes different vegetation, soil and plant functional traits (PFTs) of 15 plant species in 30 sampling plots of an agricultural landscape in the Haean-myun catchment in South Korea. We divided the data set into two main tables, the first one includes the PFTs data of the 15 studied plant species, and the second one includes the soil and vegetation characteristics of the 30 sampling plots. For a total of 150 individuals, we measures the maximum plant height (cm) and leaf size (cm**2), which means the leaf surface area for the aboveground compartment of each individual. For the belowground compartment, we measured root horizontal width, which is the maximum horizontal spread of the root, rooting length, which is the maximum rooting depth, root diameter, which is the average root diameter of a the whole root, specific root length (SRL), which is the root length divided by the root dry mass, and root/shoot ratio, which is the root dry mass divided by the shoot dry mass. At each of the 30 studied plots, we estimated three different variables describing the vegetation characteristics: vegetation cover (i.e. the percentage of ground covered by vegetation), species richness (i.e. the number of observed species) and root density (estimated using a 30 cm x 30 cm metallic frame divided into nine 10 cm x 10 cm grids placed on the soil profile), as we calculated the total number of roots that appear in each of the nine grids and then we converted it into percentage based on the root count, following. Moreover, in each plot we estimated six different soil variables: Bulk density (g/cm**3), clay % (i.e. percentage of clay), silt % (i.e. percentage of silt), soil aggregate stability, using mean weight diameter (MWD), penetration resistance (kg/cm**2), using pocket penetrometer and soil shear vane strength (kPa).
Resumo:
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short-lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2-10 °C for 2-14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week-long extreme winter warming events - using infrared heating lamps and soil warming cables - for 3 consecutive years in a sub-Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11-75% and 52-95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis-idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long-term summer warming simulations and the 'greening' seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.
Resumo:
1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.