14 resultados para right to water
em Publishing Network for Geoscientific
(Table 2) Fluxes of dissolved metals from bottom sediments to water in the Amur and Zolotoy Rog bays
Resumo:
A number of parameters of biogeochemical interest were monitored along a north-southerly transect (S 43-S 63°) in the Atlantic Sector of the Southern Ocean from the 8th to the 20th of December 1997. Changes in total dissolved inorganic carbon (CT) and total alkalinity (AT) were mostly dependent on temperature and salinity until the ice edge was reached. After this point only a weak correlation was seen between these. Highest mean values of CT and AT were observed in the Winter Ice Edge (WIE) (2195 and 2319 µmol/kg, respectively). Lowest mean AT (2277 µmol/kg) was observed in the Sub-Antarctic Front (SAF), whereas lowest mean CT concentration (2068 µmol/kg) was associated with the Sub-Tropical Front (STF). The pH in situ varied between 8.060 and 8.156 where the highest values were observed in the southern part of the Antarctic Polar Front (APF) and in the Summer Ice Edge (SIE) Region . These peaks were associated with areas of high chlorophyll a (chl a) and tribromomethane values. In the other areas the pH in situ was mainly dependent on hydrography. Bacterial abundance decreased more than one order of magnitude when going from north to south. The decrease appeared to be strongly related to water temperature and there were no elevated abundances at frontal zones. Microphytoplankton dominated in the SAF and APF, whereas the nano- and picoplankton dominated outside these regions. Volatile halogenated compounds were found to vary both with regions, and with daylight. For the iodinated compounds, the highest concentrations were found north of the STF. Brominated hydrocarbons had high concentrations in the STF, but elevated concentrations were also found in the APF and SIE regions. No obvious correlation could be found between the occurrence of individual halocarbons and chl a. On some occasions trichloroethene and tribromomethane related to the presence of nano- and microplankton, respectively.
Resumo:
We determined d18OCib values of live (Rose Bengal stained) and dead epibenthic foraminifera Cibicidoides wuellerstorfi, Cibicides lobatulus, and Cibicides refulgens in surface sediment samples from the Arctic Ocean and the Greenland, Iceland, and Norwegian seas (Nordic Sea). This is the first time that a comprehensive d18OCib data set is generated and compiled from the Arctic Ocean. For comparison, we defined Atlantic Water (AW), upper Arctic Bottom Water (uABW), and Arctic Bottom Water (ABW) by their temperature/salinity characteristics and calculated mean equilibrium calcite d18Oequ from summer sea-water d18Ow and in situ temperatures. As a result, in the Arctic environment we compensate for Cibicidoides- and Cibicides-specific offsets from equilibrium calcite of -0.35 and -0.55 per mil, respectively. After this taxon-specific adjustment, mean d18OCib values plausibly reflect the density stratification of principle water masses in the Nordic Sea and Arctic Ocean. In addition, mean d18OCib from AW not only significantly differs from mean d18OCib from ABW, but also d18OCib from within AW differentiates in function of provenience and water mass age. Furthermore, in shallow waters brine-derived low d18Ow can significantly lower the d18OCib of Cibicides spp. and thus d18OCib may serve as a paleobrine indicator. There is no statistically significant difference, however, between deeper water masses mean d18OCib of the Nordic Sea, and of the Eurasian and Amerasian basins, and no influence of low-d18Ow brines is recorded in Recent uABW and ABW d18OCib of C. wuellerstorfi. This may be due to dilution of a low-d18Ow brine signal in the deep sea, and/or to preferential incorporation of relatively high-d18Ow brines from high-salinity shelves. Although our data encompass environments with seasonal sea-ice and brine formation supposed to ultimately ventilate the deep Arctic Ocean, d18OCib from uABW and ABW do not indicate negative excursions. This may challenge hypotheses that call for enhanced Arctic brine release to explain negative benthic d18O spikes in deep-sea sediments from the late Pleistocene North Atlantic Ocean.
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.
Resumo:
Tayrona National Natural Park (TNNP; 11°17' - 11°22' N and 73°53' - 74°12' W) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. Here, a range of water quality parameters relevant for coral reef functioning is provided. Water quality was measured directly above local coral reefs (~10 m water depth) by a monthly monitoring for up to 25 months in the four TNNP bays (Chengue, Gayraca, Neguanje, and Cinto) and at sites with different degree of exposition to winds, waves and water currents (exposed vs. sheltered sites) within each bay. The water quality parameters include: inorganic nutrient (nitrate, nitrite and soluble reactive phosphorus), chlorophyll a, particulate organic carbon and nitrogen concentrations (with a replication of n=3) as well as oxygen availability, biological oxygen demand, seawater pH, and water clarity (with a replication of n=4). This is by far the most comprehensive coral reefs water quality dataset for the region. A detailed description of the methods can be found within the referenced publications.
Resumo:
Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
Resumo:
Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal d18O records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at -5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the d13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar d13C changes are seen in P. wuellerstorfi and G. bulloides, but the amplitude of the signal is always greater in G. bulloides. Variability in d13C common to both species probably reflects variability in the d13C of total CO2 in seawater. Major long-term features in the d13C record include a latest Miocene maximum (P. wuellerstorfi = 1.5 per mil ) in paleomagnetic Chron 7, an abrupt decrease in d13C at -6.2 Ma, and a slight increase at -5.5 Ma. The decrease in d13C at -6.2 Ma, which has been paleomagnetically dated only twice before, occurs in the upper reversed part of Chronozone 6 at Holes 552A and 611C, in excellent agreement with earlier studies. Cycles in d13C with a period of ~ 10 4 yrs. are interpreted as changes in seawater chemistry, which may have resulted from orbitally induced variability in continental biomass. Samples of P. wuellerstorfi younger than 6 Ma from throughout the North Atlantic have d13C near lo, on average ~ l per mil greater than samples of the same age in the Pacific Ocean. Thus, there is no evidence for cessation of North Atlantic Deep Water production resulting from the Messinian "salinity crisis." Biostratigraphic results indicate continuous sedimentation during the late Miocene after about -6.5 Ma at Hole 552A. Nannofossil biostratigraphy is complicated by the scarcity of low-latitude marker species, but middle and late Miocene Zones NN7 through NN11 are recognized. A hiatus is present at -6.5 Ma, on the basis of simultaneous first occurrences of Amaurolithusprimus, Amaurolithus delicatus, Amaurolithus amplificus, and Scyphosphaera globulata. The frequency and duration of older hiatuses increase downsection in Hole 552A, as suggested by calcareous nannofossil biostratigraphy and magnetostratigraphy. Paleomagnetic results at Hole 552A indicate a systematic pattern of inclination changes. Chronozone 6 was readily identified because of its characteristic nannoflora (sequential occurrences of species assigned to the genus Amaurolithus) and the d13C decrease in foraminifers, but its lower reversed interval is condensed. Only the lower normal interval of Chronozone 5 was recognized at Hole 552A; the upper normal interval and the lowest Gilbert sediment are not recognized, owing to low intensity of magnetization and to coring disturbance. Interpreting magnetic reversals below Chronozone 6 was difficult because of hiatuses, but a lower normally magnetized interval is probably Chronozone 7. Correlation between DSDP Hole 552A and other North Atlantic sites is demonstrated using coiling direction changes in the planktonic foraminifer Neogloboquadrina. At most sites this genus changed its coiling preference from dominantly right to dominantly left during the late Miocene. At Hole 552A this event probably occurred about 7 m.y. ago. At the same time, P. wuellerstorfi had maximum d13C values. A similar d13C maximum and coiling change occurred together in Chron 7 at Hole 611C, and at Hole 610E. In sediment younger than -5.5 Ma, the coiling of small Neogloboquadrina species is random, but the larger species N. atlantica retains preferential left coiling.
Resumo:
In near-shore Pacific bottom sediments to the east of Japan unusually high content of free H2S ocurs. H2S resulting from bacterial reduction of sulfates from interstitial waters has a number of derivatives; pyrite dominates among them. Contents of other derivatives of H2S: sulfide sulfur and organic sulfur do not exceed 0,01%, content of organic sulfur does not exceed 0.1%. Due to reduction content of sulfates can reduce to 0,03% S. Capacity of the process of sulfate reduction, estimated by sum of all reduced forms of S - derivatives of H2S, is a function of organic matter content in sediments. Ability of bottom sediments to accumulate free H2S depends on content of reactive forms of Fe. Spatial distribution of reduced forms of S in the studied sediments is considered.
Resumo:
The sediments of a core of.1.55 m length taken on the windward side of the Cross Bank, Florida Bay, are clearly subdivided into two portions, as shown by grain size analysis: silt-sized particles predominate in the relatively homogeneous lower two thirds of the core. This is succeeded abruptly by a thin layer of sand, containing fragments of Halimeda. They indicate a catastrophic event in the Florida Bay region, because Halimeda does not grow within Florida Bay. Above this layer, the amount of sand decreases at first and then continuously increases right to the present sediment-water-interface. The median and skewness increase simultaneously with the increase in the sand and granule portion. We assume that the changing grain size distribution was determined chiefly by the density of the marine flora: during the deposition of the lower two thirds of the core a dense grass cover acted as a sediment catcher for the fine-grained detritus washed out of the shallow basins of the Florida Bay, and simultaneously prohibited renewed reworking. Similar processes go on today on the surface of most mud banks of Florida Bay. The catastrophic event indicated by the sand layer probably changed the morphology of the bank to such an extent that the sampling point was shifted more to the windward side of the bank. This side is characterized by less dense plant growth. Therefore, less detritus could be caught and the material deposited could be reworked. The pronounced increase in skewness in the upper third of the core certainly indicates a strong washing out of the smaller-sized particles. The sediments are predominantly made up of carbonates, averagely 88.14 percent. The average CaCO3-content is 83.87 percent and the average MgCO3-content amounts to 4.27 percent. The chief carbonate mineral is aragonite making up 60.1 percent of the carbonate portion in the average, followed by high-magnesian calcite (33.8 percent) and calcite (6.1 percent). With increasing grain size the aragonite clearly increases at the cost of high-magnesian calcite in the upper third of the core. Chemically, this is shown by an increase of the CaCO3 : MgCO3-ratio. This increase is mainly caused by the more common occurrence of aragonitic fragments of mollusks in the coarse grain fractions. The bulk of the carbonates is made up of mollusks, foraminifera, ostracods, and - to a much lesser extent - of corals, worm-tubes, coccolithophorids, and calcareous algae, as shown by microscopic investigations. The total amount of the carbonate in the sediments is biogenic detritus with the possible exception of a very small amount of aragonite needles in the clay and fine silt fraction. The individual carbonate components of the gravel and sand fraction can be relatively easy identified as members of a particular animal or plant group. This becomes very difficult in the silt and clay fraction. Brownish aggregates are very common in the coarse and medium silt fraction. It was not always possible to clarify their origin (biogenic detritus, faecal pellets or carbonate particles cemented by carbonates or organic slime, etc.). Organic matter (plant fragments, rootlets), quartz, opal (siliceous sponge needles), and feldspar also occur in the sediments, besides carbonates. The lowermost part of the core has an age of 1365 +/- 90 years, as shown by 14C analysis.
Resumo:
Recent work has provided useful Mg/Ca to water temperature calibrations for shallow-dwelling planktonic foraminifer species. Globorotalia truncatulinoides (right coiling (R)) is a deep-dwelling species that can serve as a source of information about the temporal variability in the water characteristics of the thermocline. We present a temperature calibration for the Mg/Ca in the shell of G. truncatulinoides (R) and examine some of the practical issues associated with evaluating the usefulness of the technique. The Mg/Ca in the primary and the secondary calcite of individual G. truncatulinoides (R) correlates exponentially with water column temperatures, showing a change of ~10% in the Mg/Ca per 1°C (R**2 = 0.92). A limited comparison with plankton tow samples demonstrates that the average Mg/Ca temperature was offset +1°C from the average temperature calculated using the d18O calibration of O'Neil et al. (1969, doi:10.1063/1.1671982), and the Mg/Ca temperatures have a range similar to the ?18O temperatures. Comparisons of the [Mg] in the core top samples to water depth of deposition indicates that dissolution does not alter the measured value of Mg in the primary calcite.
Resumo:
In contrast to numerous studies on the biomass of marine microphytobenthos from temperate coastal ecosystems, little is known from polar regions. Therefore, microphytobenthos biomass was measured at several coastal sites in Arctic Kongsfjorden (Spitsbergen) during the polar summer (June-August 2006). On sandy sediments, chla varied between 8 and 200 mg/m**2 and was related to water depth, current/wave exposure and geographical location. Biomass was rather independent of abiotic parameters such as sediment properties, salinity, temperature or light availability. At three stations, sediments at water depths of 3-4, 10, 15, 20 and 30 m were investigated to evaluate the effect of light availability on microalgae. Significant differences in distribution patterns of biomass in relation to deeper waters >10 m were found. The productive periods were not as distinct as phytoplankton blooms. Only at 3-4 m water depth at all three stations were two- to threefold increases of biomass measured during the investigation period. Hydrodynamic conditions seemed to be the driving force for differences in sediment colonisation by benthic microalgae. In spite of the extreme Arctic environmental conditions for algal growth, microphytobenthos biomass was comparable to marine temperate waters.
Resumo:
Analytical data on the basic salt composition in evaporation products of sea (ocean) water and of rain water falling on the central area of the Indian Ocean are examined. Both hot and low-temperature (vacuum) distillation were used. When ocean water evaporates under calm conditions, sea salts in molecular-dispersed state, metamorphosed in the upper boundary layer, enter the atmosphere in addition to water vapor ("salt respiration of the ocean"). Concentration of these salts is about 0.5 mg per liter of water evaporated. Salts also enter the atmosphere from a foam-covered ocean surface as aerosols.