5 resultados para reynolds number

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes-remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors. Large fecal pellets, collected in the coastal upwelling off Cape Blanc, Mauritania, showed the highest volume-specific dry mass and sinking velocities because of a high content of opal, carbonate, and lithogenic material (mostly Saharan dust), which together comprised ~80% of the dry mass. The average solid matter density within these large fecal pellets was 1.7 g cm**-3, whereas their excess density was 0.25 ± 0.07 g cm**-3. Volume-specific dry mass of all sources of aggregates and fecal pellets ranged from 3.8 to 960 µg mm**-3, and average sinking velocities varied between 51 and 732 m d**-1. Porosity was >0.43 and >0.96 within fecal pellets and phytoplankton-derived aggregates, respectively. Averaged values of apparent diffusivity of gases within large fecal pellets and aggregates were 0.74 and 0.95 times that of the free diffusion coefficient in sea water, respectively. Ballast increases sinking velocity and, thus, also potential O2 fluxes to sedimenting aggregates and fecal pellets. Hence, ballast minerals limit the residence time of aggregates in the water column by increasing sinking velocity, but apparent diffusivity and potential oxygen supply within aggregates are high, whereby a large fraction of labile organic carbon can be respired during sedimentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally and numerically investigated the generation of plumes from a local heat source (LHS) and studied the interaction of these plumes with cellular convective motion (CCM) in a rectangular cavity filled with silicon oil at a Prandtl number (Pr) of approximately two thousand. The LHS is generated using a 0.2-W green laser beam. A roll-type CCM is generated by vertically heating one side of the cavity. The CCM may lead to the formation of an unusual spiral convective plume that resembles a vertical Archimedes spiral. A similar plume is obtained in a direct numerical simulation. We discuss the physical mechanism for the formation of a spiral plume and the application of the results to mantle convection problems. We also estimate the Reynolds (Re) and Rayleigh (Ra) numbers and apply self-similarity theory to convection in the Earth's mantle. Spiral plumes can be used to interpret mantle tomography results over the last decade.