13 resultados para research processes
em Publishing Network for Geoscientific
Resumo:
For a reliable simulation of the time and space dependent CO2 redistribution between ocean and atmosphere an appropriate time dependent simulation of particle dynamics processes is essential but has not been carried out so far. The major difficulties were the lack of suitable modules for particle dynamics and early diagenesis (in order to close the carbon and nutrient budget) in ocean general circulation models, and the lack of an understanding of biogeochemical processes, such as the partial dissolution of calcareous particles in oversaturated water. The main target of ORFOIS was to fill in this gap in our knowledge and prediction capability infrastructure. This goal has been achieved step by step. At first comprehensive data bases (already existing data) of observations of relevance for the three major types of biogenic particles, organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica (BSi or opal), as well as for refractory particles of terrestrial origin were collated and made publicly available.
Resumo:
Ecosystems at high northern latitudes are subject to strong climate change. Soil processes, such as carbon and nutrient cycles, which determine the functioning of these ecosystems, are controlled by soil fauna. Thus assessing the responses of soil fauna communities to environmental change will improve the predictability of the climate change impacts on ecosystem functioning. For this purpose, trait assessment is a promising method compared to the traditional taxonomic approach, but it has not been applied earlier. In this study the response of a sub-arctic soil Collembola community to long-term (16 years) climate manipulation by open top chambers was assessed. The drought-susceptible Collembola community responded strongly to the climate manipulation, which substantially reduced soil moisture and slightly increased soil temperature. The total density of Collembola decreased by 51% and the average number of species was reduced from 14 to 12. Although community assessment showed species-specific responses, taxonomically based community indices, species diversity and evenness, were not affected. However, morphological and ecological trait assessments were more sensitive in revealing community responses. Drought-tolerant, larger-sized, epiedaphic species survived better under the climate manipulation than their counterparts, the meso-hydrophilic, smaller-sized and euedaphic species. Moreover it also explained the significant responses shown by four taxa. This study shows that trait analysis can both reveal responses in a soil fauna community to climate change and improve the understanding of the mechanisms behind them.
Resumo:
Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.
Resumo:
Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310-350 cells mL-1 vs. 1600-2000 cells mL-1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.
Resumo:
We investigated the effects of ocean acidification on juvenile clams Ruditapes decussatus (average shell length 10.24 mm) in a controlled CO2 perturbation experiment. The carbonate chemistry of seawater was manipulated by diffusing pure CO2, to attain two reduced pH levels (by -0.4 and -0.7 pH units), which were compared to unmanipulated seawater. After 75 days we found no differences among pH treatments in terms of net calcification, size or weight of the clams. The naturally elevated total alkalinity of local seawater probably contributed to buffer the effects of increased pCO2 and reduced pH. Marine organisms may, therefore, show diverse responses to ocean acidification at local scales, particularly in coastal, estuarine and transitional waters, where the physical-chemical characteristics of seawater are most variable. Mortality was significantly reduced in the acidified treatments. This trend was probably related to the occurrence of spontaneous spawning events in the control and intermediate acidification treatments. Spawning, which was unexpected due to the small size of the clams, was not observed for the pH -0.7 treatment, suggesting that the increased survival under acidified conditions may have been associated with a delay in the reproductive cycle of the clams. Future research about the impacts of ocean acidification on marine biodiversity should be extended to other types of biological and ecological processes, apart from biological calcification.
Resumo:
Ocean acidification, which like global warming is an outcome of anthropogenic CO2emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 µatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth ofAmphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.
Resumo:
Ocean acidification (OA) is believed to be a major threat for near-future marine ecosystems, and that the most sensitive organisms will be calcifying organisms and the free-living larval stages produced by most benthic marine species. In this respect, echinoderms are one of the taxa most at risk. Earlier research on the impact of near-future OA on echinoderm larval stages showed negative effects, such as a decreased growth rate, increased mortality, and developmental abnormalities. However, all the long-term studies were performed on planktotrophic larvae while alternative life-history strategies, such as nonfeeding lecithotrophy, were largely ignored. Here, we show that lecithotrophic echinoderm larvae and juveniles are positively impacted by ocean acidification. When cultured at low pH, larvae and juveniles of the sea star Crossaster papposus grow faster with no visible affects on survival or skeletogenesis. This suggests that in future oceans, lecithotrophic species may be better adapted to deal with the threat of OA compared with planktotrophic ones with potentially important consequences at the ecosystem level. For example, an increase in populations of the top predator C. papposus will likely have huge consequences for community structure. Our results also highlight the importance of taking varying life-history strategies into account when assessing the impacts of climate change, an approach that also provides insight into understanding the evolution of life-history strategies.
Resumo:
Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.