7 resultados para recession.
em Publishing Network for Geoscientific
Resumo:
An aerial survey was conducted to estimate the abundance of belugas (Delphinapterus leucas) on their wintering ground in West Greenland in March-April 2006 and 2008. The survey was conducted as a double platform aerial line transect survey, and sampled approximately 17% of the total survey area of ca. 125 000 km**2. The abundance of belugas was 10 595 (95% confidence interval 4904-24 650). The largest abundance was found at the northern part of Store Hellefiske Bank, at the eastern edge of the Baffin Bay pack ice, a pattern similar to that found in eight systematic surveys conducted since 1981. A clear relationship between decreasing sea-ice cover and increasing offshore distance of beluga sightings was established from all previous surveys, suggesting that belugas expand their distribution westward as new areas on the banks of West Greenland open up earlier in spring with reduced sea-ice coverage or early annual ice recession. This is in contrast to the relatively confined distribution of belugas near the coast in limited open areas in the early 1980s, when sea-ice cover was greater. However, the effects of the changes in coastal availability of belugas can also be observed with the correlation between catches from the local Inuit hunt and sea-ice cover, where the catches increased significantly with increasing sea-ice coverage during the period 1954-2006. These results, based on nearly 30 years of dedicated survey effort, are among the first available evidence showing a shift in distribution of an Arctic cetacean in response to changes in sea-ice coverage.
Resumo:
Glacially deformed pieces of wood, organic lake sediments and clasts of reworked peat have been collected in front of Alpine glaciers since AD 1990. The palaeoglaciological interpretation of these organic materials is related to earlier phases of glacier recession surpassing that of today's shrunken glaciers and to tree growth and peat accumulation in the valleys now occupied by the glaciers. Glacial transport of the material is indicated by wood anatomy, incorporated silt, sand and gravel particles, missing bark and deformed treerings. A total of 65 samples have been radiocarbon dated so far, and clusters of dates provide evidence of eight phases of glacier recession: 9910-9550, 9010-7980, 7250-6500, 6170-5950, 5290-3870, 3640-3360, 2740-2620 and 1530-1170 calibrated years BP. Allowing for the timelag between climatic fluctuations, glacier response and vegetation colonization, these recession phases may lag behind climatic changes by 100-200 years.
Resumo:
Early Holocene recession of the ice cover over Germania Land in North-East Greenland 7.5 ka B.P. brought the Inland Ice margin back to a position close to the present. Continued recession after that time lead to the formation of a "Storstrømmen Sound" which separated Germania Land from mainland Greenland in the period from about 6 to 1 ka B.P. The present filling of the approximately 100 km long sound by the glaciers of Storstrømmen and Kofoed-Hansen Bræ must therefore have taken place during the Little lce Age. In an archaeological sense this implies deterioration of the living conditions of Neo-Eskimos compared to those of Palaeo-Eskimos. The neoglacial re-formation and present existence of the glaciers as a Little Ice Age relict may imply a present-day instability in their dynamics, as demonstrated by the pulsations (surge-like behaviour) in the last part of the 20th century. An earlier Little Ice Age advance might possibly have had the same amplitude as that documented from the 20th century but its exact age and character is not known. The glacio-isostatic response of the earth's crust to the variations in the Holocene glacier load implies a relatively slow and slight emergence and subsequent submergence. The shift from emergence to submergence must have taken place between about 2 and 1 ka B.P.
Resumo:
Modeling and proxy studies indicate that a reduction of Atlantic Meridional Overturning Circulation (AMOC) strength profoundly impacts temperatures and salinities in the (sub)tropical Atlantic, especially on subsurface levels. While previous studies focused on prominent periods of AMOC reduction during the last deglaciation, we aim to test whether similar reconfigurations of the subtropical hydrography occurred during the moderate climatic alterations punctuating the last interglacial, Marine Isotope Stage (MIS) 5. Here, we present temperature and salinity records from a Florida Straits core by combining d18O and Mg/Ca analyses on surface (Globigerinoides ruber, white) and deep-dwelling (Globorotalia crassaformis) foraminifera, covering MIS 5 in high resolution. The data reveal increasing salinities at intermediate depths during interglacial cooling episodes, decoupled from relatively stable surface conditions. This probably indicates the spatial expansion of saline Subtropical Gyre waters due to enhanced Ekman downwelling and might also point to a changed density structure and altered geostrophic balance in Florida Straits. Notably, these oceanographic alterations are not consistently occurring during periods of AMOC reduction. The data suggest that the expansion of gyre waters into Florida Straits was impeded by the increasing influence of Antarctic Intermediate Water (AAIW) from MIS 5.5 to ~107 kyr BP. Afterwards, increasingly positive benthic d13C values imply a recession of AAIW, allowing the temporary expansion of Gyre waters into Florida Straits. We argue that the inferred transient subtropical salt accumulation and warm pool expansion might have played a pivotal role in reinvigorating meridional overturning and dampen the severity of interglacial cold phases.
Resumo:
There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.
Resumo:
This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.
Resumo:
A high-resolution continuous record of diatom census counts and diatom specific biomarkers in sediment core NBP0101-JPC24 allows assessment of oceanographic and environmental conditions in eastern Prydz Bay during the deglaciation (11 100-9000 cal yr BP) at decadal timescale. Our study improves previous snapshots investigations based on resin-embedded thin sections and presents a new proxy that compliments the diatom census counts. Our results suggest that the ice sheet retreat over the core site is dated at ~11 100 cal yr BP, setting the onset of local deglaciation and subsequent open marine conditions. The glacial retreat in Prydz Bay is due to global warming initiated at 18 cal ka BP and the regional development of the Prydz Bay cyclonic gyre. Our results further demonstrate that the deglaciation in eastern Prydz Bay can be separated in four phases: the first between 11 100 and 10 900 cal yr BP when the ice shelf was proximal and sea ice was almost perennial; the second and the third phases between 10 900-10 400 cal yr BP and 10 400-9900 cal yr BP, respectively, when the ice shelf retreated and seasonal sea ice cycle consequently developed promoting warmer water to pump into the bay within the gyre, which in turn forced the ice shelf recession and the yearly sea ice cycle establishment; and the fourth between 9900 and 9000 cal yr BP when Holocene condition were set with a recurrent seasonal sea ice cycle and a well established Prydz Bay gyre.