16 resultados para radiographs

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct age models for a suite of cores from the northeast Atlantic Ocean by means of accelerator mass spectrometer dating of a key core, BOFS 5K, and correlation with the rest of the suite. The effects of bioturbation and foraminiferal species abundance gradients upon the age record are modeled using a simple equation. The degree of bioturbation is estimated by comparing modeled profiles with dispersal of the Vedde Ash layer in core 5K, and we find a mixing depth of roughly 8 cm for sand-sized material. Using this value, we estimate that age offsets between unbioturbated sediment and some foraminifera species after mixing may be up to 2500 years, with lesser effect on fine carbonate (< 10 µm) ages. The bioturbation model illustrates problems associated with the dating of 'instantaneous' events such as ash layers and the 'Heinrich' peaks of ice-rafted detritus. Correlations between core 5K and the other cores from the BOFS suite are made on the basis of similarities in the downcore profiles of oxygen and carbon isotopes, magnetic susceptibility, water and carbonate content, and via marker horizons in X radiographs and ash beds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various types of trace fossils have been studied on radiographs of sediment cores from the Western Baltic since the early nineteen sixties. lnvestigations on the endo- und epifauna including their habitats and population densities carried out independently by biologists helped to identify the processes of their formation and classify the structures. Biogenic traces are ubiquitous in both sandy and muddy sediments of the Great Belt, where the bottom waters are weil oxygenated through inflows from the North Sea (through Kattegat-Skagerrak). Almost all types of bioturbation structures encountered in the Kiel Bay are also observed in a variety of shapes and forms, and can be considered as representative for the Western Baltic area. Polychaetes, bivalves and echinoderms were recorded at the sediment surface of the cores, and also in living positions in the sediment. The different types of burrows having distint outlines ('trace fossis'), and those having indistinct outlines ('biodeformational strctures'), and their varying abundance encountered in the area have been linked, wherever possible, to the sediment type, and to the macro-benthos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisms that are distributed across spatial climate gradients often exhibit adaptive local variations in morphological and physiological traits, but to what extent such gradients shape evolutionary responses is still unclear. Given the strong natural contrast in latitudinal temperature gradients between the North-American Pacific and Atlantic coast, we asked how increases in vertebral number (VN, known as Jordan's Rule) with latitude would differ between Pacific (Atherinops affinis) and Atlantic Silversides (Menidia menidia), two ecologically equivalent and taxonomically similar fishes with similar latitudinal distributions. VN was determined from radiographs of wild-caught adults (genetic + environmental differences) and its genetic basis confirmed by rearing offspring in common garden experiments. Compared to published data on VN variation in M. menidia (a mean increase of 7.0 vertebrae from 32 to 46°N, VN slope = 0.42/lat), the latitudinal VN increase in Pacific Silversides was approximately half as strong (a mean increase of 3.3 vertebrae from 28 to 43°N, VN slope = 0.23/lat). This mimicked the strong Atlantic (1.11°C/lat) versus weak Pacific latitudinal gradient (0.40°C/lat) in median annual sea surface temperature (SST). Importantly, the relationship of VN to SST was not significantly different between the two species (average slope = -0.39 vertebrae/°C), thus suggesting a common thermal dependency of VN in silverside fishes. Our findings provide novel support for the hypothesis that temperature gradients are the ultimate cause of Jordan's Rule, even though its exact adaptive significance remains speculative. A second investigated trait, the mode of sex determination in Atlantic versus Pacific Silversides, revealed patterns that were inconsistent with our expectation: M. menidia displays temperature-dependent sex determination (TSD) at low latitudes, where growing seasons are long or unconstrained, but also a gradual shift to genetic sex determination (GSD) with increasing latitude due to more and more curtailed growing seasons. Sex ratios in A. affinis, on the other hand, were independent of latitude and rearing temperature (indicating GSD), even though growing seasons are thermally unconstrained across most of the geographical distribution of A. affinis. This suggests that additional factors (e.g., longevity) play an important role in shaping the mode of sex determination in silverside fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment drifts on the continental rise west of the Antarctic Peninsula received fine-grained sediment and ice-rafted debris (IRD) directly from the continental shelf and thus indirectly record the history of West Antarctic glaciation. Site 1101 contains a 218-m-thick, nearly continuous section extending from the late Pliocene to the Holocene. To assess the presence of calving glaciers at sea level in the Antarctic Peninsula region, the mass accumulation rate (MAR) of IRD was calculated using the weight percent terrigenous sand fraction (250 µm to 2 mm). IRD MAR is cyclic throughout, with small peaks alternating with periods of low or no IRD. Many cycles have a sawtooth pattern that increases gradually to the peak then abruptly decreases to zero. This pattern is consistent with rapid disintegration of ice streams and release of icebergs from the continental shelf. Three unusually large peaks (three to five times the size of other peaks) occurred at approximately 2.8, 1.9, and 0.88 Ma and indicate periods of intense ice rafting. Lithofacies were described in detail using X-radiographs and core descriptions for the interval from 1.34 to 0.54 Ma. Glacial units are represented by thickly laminated mud deposited by distal turbidites and meltwater plumes. Less commonly, thinly laminated sediment formed by contour currents and diamicton by intense ice rafting. Interglacials are represented by foraminifer-bearing mud with IRD. Ice rafting appears to have increased in the later part of the glacial period and remained high in the interglacial period.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During four expeditions with RV "Polarstern" at the continental margin of the southern Weddell Sea, profiling and geological sampling were carried out. A detailed bathymetric map was constructed from echo-sounding data. Sub-bottom profiles, classified into nine echotypes, have been mapped and interpreted. Sedimentological analyses were carried out on 32 undisturbed box grab surface samples, as well as on sediment cores from 9 sites. Apart from the description of the sediments and the investigation of sedimentary structures on X-radiographs the following characteristics were determined: grain-size distributions; carbonate and Corg content; component distibutions in different grain-size fractions; stable oxygen and carbon isotopes in planktic and, partly, in benthic foraminifers; and physical properties. The stratigraphy is based On 14C-dating, oxygen isotope Stages and, at one site, On paleomagnetic measurements and 230Th-analyses The sediments represent the period of deposition from the last glacial maximum until recent time. They are composed predominantly of terrigenous components. The formation of the sediments was controlled by glaciological, hydrographical and gravitational processes. Variations in the sea-ice coverage influenced biogenic production. The ice sheet and icebergs were important media for sediment transport; their grounding caused compaction and erosion of glacial marine sediments on the outer continental shelf. The circulation and the physical and chemical properties of the water masses controlled the transport of fine-grained material, biogenic production and its preservation. Gravitational transport processes were the inain mode of sediment movements on the continental slope. The continental ice sheet advanced to the shelf edge and grounded On the sea-floor, presumably later than 31,000 y.B.P. This ice movement was linked with erosion of shelf sediments and a very high sediment supply to the upper continental slope from the adiacent southern shelf. The erosional surface On the shelf is documented in the sub-bottom profiles as a regular, acoustically hard reflector. Dense sea-ice coverage above the lower and middle continental slope resulted in the almost total breakdown of biogenic production. Immediately in front of the ice sheet, above the upper continental slope, a <50 km broad coastal polynya existed at least periodically. Biogenic production was much higher in this polynya than elsewhere. Intense sea-ice formation in the polynya probably led to the development of a high salinity and, consequently, dense water mass, which flowed as a stream near bottom across the continental slope into the deep sea, possibly contributing to bottom water formation. The current velocities of this water mass presumably had seasonal variations. The near-bottom flow of the dense water mass, in combination with the gravity transport processes that arose from the high rates of sediment accumulation, probably led to erosion that progressed laterally from east to West along a SW to NE-trending, 200 to 400 m high morphological step at the continental slope. During the period 14,000 to 13,000 y.B.P., during the postglacial temperature and sea-level rise, intense changes in the environmental conditions occured. Primarily, the ice masses on the outer continental shelf started to float. Intense calving processes resulted in a rapid retreat of the ice edge to the south. A consequence of this retreat was, that the source area of the ice-rafted debris changed from the adjacent southern shelf to the eastern Weddell Sea. As the ice retreated, the gravitational transport processes On the continental slope ceased. Soon after the beginning of the ice retreat, the sea-ice coverage in the whole research area decreased. Simultaneously, the formation of the high salinity dense bottom water ceased, and the sediment composition at the continental slope then became influenced by the water masses of the Weddell Gyre. The formation of very cold Ice Shelf Water (ISW) started beneath the southward retreating Filchner-Ronne Ice Shelf somewhat later than 12,000 y.B.P. The ISW streamed primarily with lower velocities than those of today across the continental slope, and was conducted along the erosional step on the slope into the deep sea. At 7,500 y.B.P., the grounding line of the ice masses had retreated > 400 km to the south. A progressive retreat by additional 200 to 300 km probably led to the development of an Open water column beneath the ice south of Berkner Island at about 4,000 y.B.P. This in turn may have led to an additional ISW, which had formed beneath the Ronne Ice Shelf, to flow towards the Filcher Ice Shelf. As a result, increased flow of ISW took place over the continental margin, possibly enabling the ISW to spill over the erosional step On the upper continental slope towards the West. Since that time, there is no longer any documentation of the ISW in the sedimentary Parameters on the lower continental slope. There, recent sediments reflect the lower water masses of the Weddell Gyre. The sea-ice coverage in early Holocene time was again so dense that biogenic production was significantly restricted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of ice rafted debris (IRD) is an important parameter in glaciomarine sediments. A simple method is presented allowing the determination of the IRD-content by counting the gravel fraction of the X-radiographs which are generally taken during sarnpling. In comparison with sieve analyses corresponding values are obtained by both methods. However, more information can be made available in a shorter time by this method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioturbation in marine sediments has basically two aspects of interest for palaeo-environmental studies. First, the traces left by the burrowing organisms reflect the prevailing environmental conditions at the seafloor and thus can be used to reconstruct the ecologic and palaeoceanographic situation. Traces have the advantage over other proxies of practically always being preserved in situ. Secondly, for high- resolution stratigraphy, bioturbation is a nuisance due to the stirring and mixing processes that destroy the stratigraphic record. In order to evaluate the applicability of biogenic traces as palaeoenvironmental indicators, a number of gravity cores from the Portuguese continental slope, covering the period from the last glacial to the present were investigated through X-ray radiographs. In addition, physical and chemical parameters were determined to define the environmental niche in each core interval. A number of traces could be recognized, the most important being: Thalassinoides, Planolites, Zoophycos, Chondrites, Scolicia, Palaeophycus, Phycosiphon and the generally pyritized traces Trichichnus and Mycellia. The shifts between the different ichnofabrics agree strikingly well with the variations in ocean circulation caused by the changing climate. On the upper and middle slope, variations in current intensity and oxygenation of the Mediterranean Outflow Water were responsible for shifts in the ichnofabric. Larger traces such as Planolites and Thalassinoides dominated in coarse, well oxygenated intervals, while small traces such as Chondrites and Trichichnus dominated in fine grained, poorly oxygenated intervals. In contrast, on the lower slope where calm steady sedimentation conditions prevail, changes in sedimentation rate and nutrient flux have controlled variations in the distribution of larger traces such as Planolites, Thalassinoides, and Palaeophycus. Additionally, distinct layers of abundant Chondrites correspond to Heinrich events 1, 2, and 4, and are interpreted as a response to incursions of nutrient rich, oxygen depleted Antarctic waters during phases of reduced thermohaline circulation. The results clearly show that not one single factor but a combination of several factors is necessary to explain the changes in ichnofabric. Furthermore, large variations in the extent and type of bioturbation and tiering between different settings clearly show that a more detailed knowledge of the factors governing bioturbation is necessary if we shall fully comprehend how proxy records are disturbed. A first attempt to automatize a part of the recognition and quantification of the ichnofabric was performed using the DIAna image analysis program on digitized X-ray radiographs. The results show that enhanced abundance of pyritized microburrows appears to be coupled to organic rich sediments deposited under dysoxic conditions. Coarse grained sediments inhibit the formation of pyritized burrows. However, the smallest changes in program settings controlling the grey scale threshold and the sensitivity resulted in large shifts in the number of detected burrows. Therefore, this method can only be considered to be semi-quantitative. Through AMS-^C dating of sample pairs from the Zoophycos spreiten and the surrounding host sediment, age reversals of up to 3,320 years could be demonstrated for the first time. The spreiten material is always several thousands of years younger than the surrounding host sediment. Together with detailed X-ray radiograph studies this shows that the trace maker collects the material on the seafloor, and then transports it downwards up to more than one meter in to the underlying sediment where it is deposited in distinct structures termed spreiten. This clearly shows that age reversals of several thousands of years can be expected whenever Zoophycos is unknowingly sampled. These results also render the hitherto proposed ethological models proposed for Zoophycos as largely implausible. Therefore, a combination of detritus feeding, short time caching, and hibernation possibly combined also with gardening, is suggested here as an explanation for this complicated burrow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Density and diversity of bottom fauna population as dependent on sediment types and water depth is largely well known in Kiel Bay. This is in contrast to structures and processes of bioturbation, although generally it has a big influence on the benthic boundary layer and its processes, e.g., the metabolism of the bottom fauna, the mechanical properties, the age dating, and the large field of chemical processes. In the densely inhabited sands and muddy sands of the shallower waters with sediment thicknesses of some decimeters only, bioturbation is usually ubiquitous, and most of the structures left are monotonously of "biodeformational" character. At greater water depths, however, where a sedimentary column of several meters of Holocene is developed, the X-ray radiographs of numerous sediment cores show heterogeneous biogenic structures with regional and stratigraphical differentiation. They are described in terms of ichnofabrics and are interpreted on ethological knowledge of the related macrobenthos species. lmportant organisms creating specific traces include the bivalve Arctica (Cyprina) islandica and the polychaete worm Pectinaria koreni. These species are abundant in Kiel Bay and produce by their crawling-plowing mode of locomotion, a characteristic biogenic stratification, the "plow-sole structure". Other typical biogenic structures are tube traces, which are left by a number of different polychaetes occurring either singly, or as U-pairs mainly in mud sediments. Although sea urchins are rare to absent in Kiel Bay, layers of their characteristic traces Scolicia occur as witness of paleohydrographic events in channel sediments of the central bay. Plow-sole traces, polychaete-tube ichnofabric, Scolicia layers and alternations of laminated and bioturbated layers are considered as building blocks of a future "ichnostratigraphy" of Kiel Bay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geologie cores on two profiles oriented normaly to the continental shelf and slope, have been investigated to reconstruct the Quaternary sedimentary history of the southeast continental border of South Orkney (NW Weddell Sea). The sediments were described macroscopically and their fabric investigated by use of X-radiographs. Laboratory work comprised detailed grain-size analysis, determination of the watercontent, carbonate, organic carbon and sand fraction.composition. Stable oxygen and carbon isotopes have been measured On planktonic foraminifera. Palaeomagnetism, analysis of 230Th-content and detailed comparison of the lithlogic Parameters with the oxygen isotope stages (Martinson curve) were used for stratigraphic classification of the sediments. The sediment cores from the continental slope comprise a maximum age of 300,000 years B. P.. Bottom currents, ice rafting and biogenic input are the main sources of sediment. Based on lithologic parameters a distinction between glacial and interglacial facies is possible. Silty clays without microfossils and few bioturbation characterise the sediments of the glacial facies. Only small amounts of icerafted debris can be recognized. This type of sediment was accumulated during times of lower sea-level and drastically reduced rate of bottom water production. Based on grain-size distribution, bottom current velocities of 0.01 cmls were calculated. Thick sea-ice coverage reduced biogenic production in the surface water, and as consequence benthic communities were depleted. Because of the reduced benthic life, sediments are only slithly bioturbated. At the beginning of the interglacial Stage, the sea-level rised rapidly, and calving rate of icebergs, combined with input of ice-rafted material, increased considerably. Sediments of this transition facies are silty cliiys with a high proportion of coarse ice-rafted debris, but without microfossils. With the onset of bottom water production in connection with shelf ice water, sediments of interglacial facies were formed. They consist of silty clays to clayey silts with considerable content of sand and gravel. Sediments are strongly bioturbated. Based On the sediment caracteristics, current velocities of the bottom water were calculated to be of 0.96 cmls for interglacials. At the southern slope of a NW/SE-striking ridge, bottom water current is channelized, resulting in a drastic increase of current velocities. Current velocities up to 7.5 cm/s lead to formation of residual sediments. While the continental slope has predominantly fine sediments, the South Orkney shelf are mainly sandy silts and silty sands with a high proportion of gravel. These sediments were formed dominantly by ice-rafting during Brunhes- and Matuyama-Epoch. Currents removed the fine fraction of the sediments. Based on microfossil contents it was not possible to differentiate sediments from glacial to interglacial. In the upper Parts of the cores graded sequences truncated by erosion were observed. These sequences were formed during Brunhes-Epoch by strong currents with velocities decreasing periodically from about 7.5 cm/s to about 1 cm/s. Sediments with a high proportion of siliceous microfossils but barren of foraminifera compose the lower part of the shelf cores. These sediments have formed during the warmer Matuyama-Epoch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Amundsen Sea Embayment (ASE) drains approximately 35% of the West Antarctic Ice Sheet (WAIS) and is one of the most rapidly changing parts of the cryosphere. In order to predict future ice-sheet behaviour, modellers require long-term records of ice-sheet melting to constrain and build confidence in their simulations. Here, we present detailed marine geological and radiocarbon data along three palaeo-ice stream tributary troughs in the western ASE to establish vital information on the timing of deglaciation of the WAIS since the Last Glacial Maximum (LGM). We have undertaken multi-proxy analyses of the cores (core description, shear strength, x-radiographs, magnetic susceptibility, wet bulk density, total organic carbon/nitrogen, carbonate content and clay mineral analyses) in order to: (1) characterise the sedimentological facies and depositional environments; and (2) identify the horizon(s) in each core that would yield the most reliable age for deglaciation. In accordance with previous studies we identify three key facies, which offer the most reliable stratigraphies for dating deglaciation by recording the transition from a grounded ice sheet to open marine environments. These facies are: i) subglacial, ii) proximal grounding-line, and iii) seasonal open-marine. In addition, we incorporate ages from other facies (e.g., glaciomarine diamictons deposited at some distance from the grounding line, such as glaciogenic debris flows and iceberg rafted diamictons and turbates) into our deglacial model. In total, we have dated 78 samples (mainly the acid insoluble organic (AIO) fraction, but also calcareous foraminifers), which include 63 downcore and 15 surface samples. Through careful sample selection prior to dating, we have established a robust deglacial chronology for this sector of the WAIS. Our data show that deglaciation of the western ASE was probably underway as early as 22,351 calibrated years before present (cal 44 yr BP), reaching the mid-shelf by 13,837 cal yr BP and the inner shelf to within c.10-12 km of the present ice shelf front between 12,618 and 10,072 cal yr BP. The deglacial steps in the western ASE broadly coincide with the rapid rises in sea-level associated with global meltwater pulses 1a and 1b, although given the potential dating uncertainty, additional, more precise ages are required before these findings can be fully substantiated. Finally, we show that the rate of ice-sheet retreat increased across the deep (up to1,600 m) basins of the inner shelf, highlighting the importance of reverse slope and pinning points in accelerated phases of deglaciation.