513 resultados para radiocarbon ages

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare six high-resolution Holocene, sediment cores along a S-N transect on the Norwegian-Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10-102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than +- 1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas-Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S-N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60-69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72-77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S-N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000-8000, 5500-3000 and 1000 and ~400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In locations of rapid sediment accumulation receiving substantial amounts of laterally transported material the timescales of transport and accurate quantification of the transported material are at the focus of intense research. Here we present radiocarbon data obtained on co-occurring planktic foraminifera, marine haptophyte biomarkers (alkenones) and total organic carbon (TOC) coupled with excess Thorium-230 (230Thxs) measurements on four sediment cores retrieved in 1649-2879 m water depth from two such high accumulation drift deposits in the Northeast Atlantic, Björn and Gardar Drifts. While 230Thxs inventories imply strong sediment focussing, no age offsets are observed between planktic foraminifera and alkenones, suggesting that redistribution of sediments is rapid and occurs soon after formation of marine organic matter, or that transported material contains negligible amounts of alkenones. An isotopic mass balance calculation based on radiocarbon concentrations of co-occurring sediment components leads us to estimate that transported sediment components contain up to 12% of fossil organic matter that is free of or very poor in alkenones, but nevertheless appears to consist of a mixture of fresh and eroded fossil material. Considering all available constraints to characterize transported material, our results show that although focussing factors calculated from bulk sediment 230Thxs inventories may allow useful approximations of bulk redeposition, they do not provide a unique estimate of the amount of each laterally transported sediment component. Furthermore, our findings provide evidence that the occurrence of lateral sediment redistribution alone does not always hinder the use of multiple proxies but that individual sediment fractions are affected to variable extents by sediment focussing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithological and stratigraphical data obtained from 167 boreholes from the Schaabe spit in northeast Rügen and 46 radiocarbon datings mainly on peats, as well as interpretation of diatoms and palynological assemblages lead to a reappraisal of its sedimentational history and morphological development. The new local shoreline displacement curve is compared and discussed with the previous curve of Vorpommern (Southern Baltic Sea).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminated sediments are unique archives of palaeoenvironmental and palaeoceanographic conditions, recording changes on seasonal and interannual timescales. Diatom-rich laminated marine sediments are examined from Dumont d'Urville Trough, East Antarctic Margin, to determine changes in environmental conditions on the continental shelf from 1136 to 3122 cal. yr BP. Scanning electron microscope backscattered electron imagery (BSEI) and secondary electron imagery are used to analyse diatom assemblages from laminations and to determine interlamina relationships. Diatom observations are quantified with conventional assemblage counts. Laminae are primarily classified according to visually dominant species identified in BSEI and, secondarily, by terrigenous content. Nine lamina types are identified and are characterized by: Hyalochaete Chaetoceros spp. resting spores (CRS); CRS and Fragilariopsis spp.; Fragilariopsis spp.; Corethron pennatum and Rhizosolenia spp.; C. pennatum; Rhizosolenia spp.; mixed diatom assemblage; Stellarima microtrias resting spores (RS), Porosira glacialis RS and Coscinodiscus bouvet; and P. glacialis RS. Formation of each lamina type is controlled by seasonal changes in sea ice cover, nutrient levels and water column stability. Quantitative diatom assemblage analysis revealed that each lamina type is dominated by CRS and Fragilariopsis sea ice taxa, indicating that sea ice cover was extensive and persistent in the late Holocene. However the lamina types indicate that the sea ice regime was not consistent throughout this period, notably that a relatively warmer period, ~3100 to 2500 cal. yr BP, was followed by cooling which resulted in an increase in year round sea ice by ~1100 cal. yr BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous coring in Saanich Inlet (Ocean Drilling Program, ODP Leg 169S), British Columbia, Canada, yielded a detailed record of Late Quaternary climate, oceanography, marine productivity, and terrestrial vegetation. Two sites (1033 and 1034) were drilled to maximum depths of 105 and 118 m, recovering sediments ranging in age from 13,300 to less than 300 14C yr. Earliest sediments consist of dense, largely massive, gray glaciomarine muds with dropstones and sand and silt laminae deposited during the waning stages of glaciation. Deposition of organic-rich olive gray sediments began in the fjord about 12,000 14C yr ago, under well-oxygenated conditions as reflected by the presence of bioturbation and a diverse infaunal bivalve community. At about 10,500 14C yr, a massive, gray unit, 40-50 cm thick, was emplaced in a very short span of time. The unit is marked by a sharp lower contact, a gradational upper contact and an abundance of reworked Tertiary microfossils. It has been interpreted as resulting from massive flood events caused by the collapse of glacial dams in the Fraser Valley of mainland British Columbia. Progressively greater anoxia in bottom waters of Saanich Inlet began about 7000 14C yr ago. This is reflected in the preservation of varved sediments consisting of diatomaceous spring-summer laminae and terrigenous winter laminae. Correlation of the sediments was based on: marked lithologic changes, the presence of massive intervals (reflecting localized sediment gravity flow events), the Mazama Ash, occasional thin gray laminae (indicative of abnormal flood events in nearby watersheds), varve counts between marker horizons, and 71 accelerator mass spectrometry (AMS) radiocarbon dates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5°S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38°S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36°S appears to be best suited for turbidite paleoseismology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatom assemblages from Holsteinsborg Dyb on the West Greenland shelf were analysed with high temporal resolution for the last 1200 years. A high degree of consistency between changes in frequency of selected diatom species and instrumental data from the same area during the last 70 years confirms the reliability of diatoms (particularly sea-ice species and warm-water species) for the study of palaeoceanographic changes in this area. A general cooling trend with some fluctuations is marked by an increase in sea-ice species throughout the last 1200 years. A relatively warm period with increased influence of Atlantic water masses of the Irminger Current (IC) is found at AD 750-1330, although with some oceanographic variability after AD 1000. A pronounced oceanographic shift occurred at AD 1330, corresponding in time to the transition from the so-called 'Medieval Warm Period' (MWP) to the 'Little Ice Age' (LIA). The LIA cold episode is characterized by three intervals with particularly cold sea-surface conditions at AD 1330-1350, AD 1400-1575 and AD 1660-1710 as a result of variable influence of Polar waters in the area. During the last 70 years, two relatively warm periods and one cold period (the early 1960s to mid-1990s) are indicated by changes in the diatom components. Our study demonstrates that sedimentary records on the West Greenland shelf provide valuable palaeoenvironment data that confirm a linkage between local and large-scale North Atlantic oceanographic and atmospheric oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two bottom sediment cores (BP00-23/7 and BP00-7/6) recovered from the Yenisei transect in the southern Kara Sea are described. Data on their grain size composition, clay and heavy mineral assemblages, and distribution of a large group of chemical elements are presented. Radiocarbon dates based on AMS C-14 method suggest the Holocene age of sediments in the cores. Literature data on physical properties and foraminifers have also been analyzed. The facies affiliation of the lithostratigraphic subdivisions has been unraveled. History of the Yenisei River runoff in the Holocene has been reconstructed on the basis of different indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.