9 resultados para radiation transmission

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m**2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes measurements from shortwave radiation radiosonde ascents done at the Atlantische Expedition 1969. Using the results from a total of 67 ascents mean components of the shortwave radiation budget of the atmospheric layer between the ocean surface and the top of the ascent are discussed. The influence of clouds on the radiation balance is shown by dividing the ascents in classes of cloudiness and cloud altitude. Thereby the albedo of the ocean surface is increasing with increasing amount of cloudiness. Similar the albedo of the troposphere increases involving an increased heating rate of the atmospheric layer.