104 resultados para radiation absorption analysis
em Publishing Network for Geoscientific
Resumo:
The X-ray fluorescence (XRF) core scanner provides bulk-sediment chemistry data measured nondestructively at the split core sediment surface. Although this method is widely accepted, there is little known about the effects of physical properties such as density and water content on XRF core scanner data. Comparison of XRF scanner measurements from the sediment surface and dry powder samples of sediment core GeoB7920 indicates strongly reduced element intensities for the lighter elements Al and Si. We relate the lower element intensities of the measurements taken at the sediment surface to the amount of water in the sample volume analyzed by the XRF core scanner. The heavier elements K, Ca, Ti, and Fe remain relatively unaffected by the variation of any physical property within sediment core GeoB7920. Additionally, we successfully use the elemental intensity of Cl as a proxy for the seawater content in the sample volume analyzed by the XRF core scanner. This enables the establishment of a correction function for the elements Al and Si that corrects for the radiation absorption of the water content in sediment core GeoB7920 off Cape Blanc, NW Africa.
Resumo:
A University of Hawaii oceanographic cruise, Abyssal Hills 69, with the R/V Mahi, was carried out to study the association of manganese nodules with an abyssal hill. Manganese nodules from three dredge hauls on an abyssal hill located at 36°W and 157°W exhibited differences in morphology and composition between stations only three miles apart. The morphology of the nodules suggests that nodules from a single site have similar morphologies because they began growth at the same time, probably because of a volcanic event. Differences in morphology between stations indicate a local supply of elements. Atomic absorption analysis for manganese, iron, cobalt, nickel, and copper revealed that nodules nearest to a probable fault line and source of volcanism have a, lower manganese to iron ratio than nodules farther removed. This finding supports the theory that volcanism contributes to the formation of some nodules. Additional evidence showing association with volcanism consists of volcanic nuclei in nodules, crusts formed on layers of volcanic ash, and basalt encrusted to various degrees. The variation in cobalt, nickel, and copper contents Gt the nodules from a single dredge is two-to threefold, but iron content is more uniiorm. Four of the six cores from the area increased in manganese concentration with depth, suggesting that diffusion is concentrating manganese in the upper zone of the sediments or in nodules. The author concludes that volcanism is contributing to the formation of nodules by supplying nuclei and transition elements, but is not necessary for the formation of manganese nodules.
Resumo:
The area surveyed during project AMC-11-67 was the portion of the Blake Plateau between latitude 30°00'N and 33°00'N and between the 100 to 1000 fathom curves. The survey was conducted from 3 October until 18 October 1967. Survey operations included dredgings, camera and multi-sensor lowerings. A collection of manganese and phosphate concretions as well as coral and sediment samples were examined by the ESSA(NOAA) Atlantic Oceanographic Laboratories. Chemical analyses were conducted at the NASA Manned Spacecraft Center, Houston by Richard A. Laidley for X-Ray Fluorescence Analysis and H. Costello for Atomic Absorption Analysis. Later the whole collection of samples was transferred to the Smithsonian National Museum of Natural History were it is available for study (see, http://mineralsciences.si.edu/collections.htm).
Resumo:
The cruise with RV Tydeman was devoted to study permanently stratified plankton systems in the (sub)tropical ocean, which are characterised by a deep chlorophyll peak between 80 and 150 m. To minimise lateral effects by horizontal transport of nutrients and organic matter from river outflow and upwelling regions, stations were selected in the middle of the North Atlantic Ocean between the continents of America and Africa. (5 - 35° N and 50 - 15° W). Here the vertical distributions of light and nutrients control the abundance and growth of autotrophic algae in the thermically stratified water column. This phytoplankton is numerically dominated by the prokaryotic picoplankters Synechococcus spp. and Prochlorococcus spp., which are smaller than 2 ?m. The productivity of the 100 to 150 m deep euphotic zone can be high, because a high heterotrophic/autotrophic biomass ratio induces a rapid regeneration of nutrients and inorganic carbon. Primary grazers are mainly micro-organisms such as heterotrophic nannoflagellates and ciliates, which feed on the small algae and on bacteria. Heterotrophic bacteria can outnumber the autotrophic algae, because their number is related to the substrate pools of dissolved and particulate dead organic matter. These DOC and detritus pools reach equilibrium at a concentration, where the rate of their production (proportional to algal biomass) equals their mineralisation and sinking rate (proportional to the concentration and weight of POC and detritus). At a relatively low value of the weight-specific loss rates, the equilibrium concentration of these carbon pools and their load of bacteria can be high. The bacterial productivity is proportional to the mineralisation rate, which in a steady state can never be higher than the rate of primary production. Hence the ratio in turnover rate of bacteria and autotrophs tends to be reciprocally proportional to their biomass ratio.
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
Information on possible resource value of sea floor manganese nodule deposits in the eastern north Pacific has been obtained by a study of records and collections of the 1972 Sea Scope Expedition.
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.