16 resultados para primary-backup model

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ice-covered Central Arctic Ocean is characterized by low primary productivity due to light and nutrient limitations. It has been speculated that the recent reduction in ice cover could lead to a substantial increase in primary production, but still little is known as to the fate of the ice-associated primary production, and of nutrient supply with increasing warming. This study presents results from the Central Arctic Ocean collected during summer 2012, when sea-ice reached a minimum extent since the onset of satellite observations. Net primary productivity (NPP) was measured in water column, sea ice and melt ponds by 14CO2 uptake at different irradiances. Photosynthesis vs. irradiance (PI) curves were established in laboratory experiments and used to upscale measured NPP to the deep Eurasian Basin (north of 78°N) using the irradiance-based Central Arctic Ocean Primary Productivity model (CAOPP). In addition, new annual production was calculated from the seasonal nutrient drawdown in the mixed layer since last winter. Results show that ice algae can contribute up to 60% to primary production in the Central Arctic at the end of the season. The ice-covered water column had lower NPP rates than open water probably due to light limitation. According to the nutrient ratios in the euphotic zone, nitrate limitation was detected in the Siberian Seas (Laptev Sea area), while silicate was the main limiting nutrient at the ice margin influenced by Atlantic waters. Although sea-ice cover was substantially reduced in 2012, total annual new production in the Eurasian Basin was 17 ± 7 Tg C/yr, which is similar to previous estimates. However, when including the contribution by sub-ice algal filaments, the annual production for the deep Eurasian Basin (north of 78°N) is 16 Tg C/yr higher than estimated before. Our data suggest that sub-ice algae might be responsible for potential local increases in NPP due to higher light availability under the ice, and their ability to benefit from a wider area of nutrients as they drift with the ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the 14C reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the 14C reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, 14C determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 µg C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (deltaR) is calculated by comparing the foraminifera 14C determinations to a PSV & Pb age model. This deltaR is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present dataset contain source data for Figure 5a from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Phosphorylation levels of JAK2 at 7 min after stimulation for Epo concentrations ranging from 0.1 to 1000 U/ml were simulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SIMBAA is a spatially explicit, individual-based simulation model. It was developed to analyse the response of populations of Antarctic benthic species and their diversity to iceberg scouring. This disturbance is causing a high local mortality providing potential space for new colonisation. Traits can be attributed to model species, e.g. in terms of reproduction, dispersal, and life span. Physical disturbances can be designed in space and time, e.g. in terms of size, shape, and frequency. Environmental heterogeneity can be considered by cell-specific capacities to host a certain number of individuals. When grid cells become empty (after a disturbance event or due to natural mortality of of an individual), a lottery decides which individual from which species stored in a pool of candidates (for this cell) will recruit in that cell. After a defined period the individuals become mature and their offspring are dispersed and stored in the pool of candidates. The biological parameters and disturbance regimes decide on how long an individual lives. Temporal development of single populations of species as well as Shannon diversity are depicted in the main window graphically and primary values are listed. Examples for simulations can be loaded and saved as sgf-files. The results are also shown in an additional window in a dimensionless area with 50 x 50 cells, which contain single individuals depicted as circles; their colour indicates the assignment to the self-designed model species and the size represents their age. Dominant species per cell and disturbed areas can also be depicted. Output of simulation runs can be saved as images, which can be assembled to video-clips by standard computer programs (see GIF-examples of which "Demo 1" represents the response of the Antarctic benthos to iceberg scouring and "Demo 2" represents a simulation of a deep-sea benthic habitat).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification (OA) due to atmospheric CO2 rise is expected to influence marine primary productivity. In order to investigate the interactive effects of OA and light changes on diatoms, we grew Phaeodactylum tricornutum, under ambient (390 ppmv; LC) and elevated CO2 (1000 ppmv; HC) conditions for 80 generations, and measured its physiological performance under different light levels (60 µmol/m**2/s, LL; 200 µmol/m**2/s, ML; 460 µmol/m**2/s, HL) for another 25 generations. The specific growth rate of the HC-grown cells was higher (about 12-18%) than that of the LC-grown ones, with the highest under the ML level. With increasing light levels, the effective photochemical yield of PSII (Fv'/Fm') decreased, but was enhanced by the elevated CO2, especially under the HL level. The cells acclimated to the HC condition showed a higher recovery rate of their photochemical yield of PSII compared to the LC-grown cells. For the HC-grown cells, dissolved inorganic carbon or CO2 levels for half saturation of photosynthesis (K1/2 DIC or K1/2 CO2) increased by 11, 55 and 32%, under the LL, ML and HL levels, reflecting a light dependent down-regulation of carbon concentrating mechanisms (CCMs). The linkage between higher level of the CCMs down-regulation and higher growth rate at ML under OA supports the theory that the saved energy from CCMs down-regulation adds on to enhance the growth of the diatom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the relationship between CO2-induced seawater acidification, photo-physiological performance and intracellular pH (pHi) in a model cnidarian-dinoflagellate symbiosis - the sea anemone Aiptasia sp. -under ambient (289.94 ± 12.54 µatm), intermediate (687.40 ± 25.10 µatm) and high (1459.92 ± 65.51 µatm) CO2 conditions. These treatments represented current CO2 levels, in addition to CO2 stabilisation scenarios IV and VI provided by the Intergovernmental Panel on Climate Change (IPCC). Anemones were exposed to each treatment for two months and sampled at regular intervals. At each time-point we measured a series of physiological responses: maximum dark-adapted fluorescent yield of PSII (Fv/Fm), gross photosynthetic rate, respiration rate, symbiont population density, and light-adapted pHi of both the dinoflagellate symbiont and isolated host anemone cell. We observed increases in all but one photo-physiological parameter (Pgross:R ratio). At the cellular level, increases in light-adapted symbiont pHi were observed under both intermediate and high CO2 treatments, relative to control conditions (pHi 7.35 and 7.46 versus pHi 7.25, respectively). The response of light-adapted host pHi was more complex, however, with no change observed under the intermediate CO2 treatment, but a 0.3 pH-unit increase under the high CO2 treatment (pHi 7.19 and 7.48, respectively). This difference is likely a result of a disproportionate increase in photosynthesis relative to respiration at the higher CO2 concentration. Our results suggest that, rather than causing cellular acidosis, the addition of CO2 will enhance photosynthetic performance, enabling both the symbiont and host cell to withstand predicted ocean acidification scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study analyses the sign, strength, and working mechanism of the vegetation-precipitation feedback over North Africa in middle (6 ka BP) and early Holocene (9 ka BP) simulations using the comprehensive coupled climate-vegetation model CCSM3-DGVM (Community Climate System Model version 3 and a dynamic global vegetation model). The coupled model simulates enhanced summer rainfall and a northward migration of the West African monsoon trough along with an expansion of the vegetation cover for the early and middle Holocene compared to the pre-industrial period. It is shown that dynamic vegetation enhances the orbitally triggered summer precipitation anomaly by approximately 20% in the Sahara-Sahel region (10-25° N, 20° W-30° E) in both the early and mid-Holocene experiments compared to their fixed-vegetation counterparts. The primary vegetation-rainfall feedback identified here operates through surface latent heat flux anomalies by canopy evaporation and transpiration and their effect on the mid-tropospheric African easterly jet, whereas the effects of vegetation changes on surface albedo and local water recycling play a negligible role. Even though CCSM3-DGVM simulates a positive vegetation-precipitation feedback in the North African region, this feedback is not strong enough to produce multiple equilibrium climate-ecosystem states on a regional scale.

Relevância:

30.00% 30.00%

Publicador: