168 resultados para precipitation gradient

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Jena Biodiversity Experiment is located on a Central European mesophilic floodplain on the banks of the Saale River (see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In June 2013, a natural 200-year flood event occurred at the field site. Rainfall in May 2013 in Jena was ~150mm, constituting >25% of annual precipitation at the site that year. Overall the flood affected the entire Elbe River Basin and much of Europe and was one of the largest natural flooding events in the past two centuries. The flood lasted for a total of 24 days at the site (30 May-24 June) and led to anaerobic soil conditions. Due to small topographical differences among the plots in the experiment (<1m), there was variation in the duration of flooding and the proportion of each plot that was flooded. This variation was well-distributed across the diversity gradient. To assess the importance of flood severity, the proportion of each plot that was flooded was estimated by eye (using five classes: 0 completely dry, 0.25 up to a quarter under water, 0.5 half, 0.75 up to three quarters under water, and 1 more than three quarters under water up to completely submerged). These values, for each of the 24 days that the flood lasted, were summed up to calculate a flooding index. The resulting flooding index is given for each plot of the Main Experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snowfall was measured at 11 sites in the McMurdo Dry Valleys to determine its magnitude, its temporal changes, and spatial patterns. Annual values ranged from 3 to 50 mm water equivalent with the highest values nearest the coast and decreasing inland. A particularly strong spatial gradient exists in Taylor Valley, probably resulting from local uplift conditions at the coastal margin and valley topography that limits migration inland. More snow occurs in winter near the coast, whereas inland no seasonal pattern is discernable. This may be due, again, to local uplift conditions, which are common in winter. We find no influence of the distance to the sea ice edge. Katabatic winds play an important role in transporting snow to the valley bottoms and essentially double the precipitation. That much of the snow accumulation sublimates prior to making a hydrologic contribution underscores the notion that the McMurdo Dry Valleys are indeed an extreme polar desert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sea Ice Mass Balance in the Antarctic (SIMBA) experiment was conducted from the RVIB N.B. Palmer in September and October 2007 in the Bellingshausen Sea in an area recently experiencing considerable changes in both climate and sea ice cover. Snow and ice properties were observed at 3 short-term stations and a 27-day drift station (Ice Station Belgica, ISB) during the winter-spring transition. Repeat measurements were performed on sea ice and snow cover at 5 ISB sites, each having different physical characteristics, with mean ice (snow) thicknesses varying from 0.6 m (0.1 m) to 2.3 m (0.7 m). Ice cores retrieved every five days from 2 sites and measured for physical, biological, and chemical properties. Three ice mass-balance buoys (IMBs) provided continuous records of snow and ice thickness and temperature. Meteorological conditions changed from warm fronts with high winds and precipitation followed by cold and calm periods through four cycles during ISB. The snow cover regulated temperature flux and controlled the physical regime in which sea ice morphology changed. Level thin ice areas had little snow accumulation and experienced greater thermal fluctuations resulting in brine salinity and volume changes, and winter maximum thermodynamic growth of ~0.6 m in this region. Flooding and snow-ice formation occurred during cold spells in ice and snow of intermediate thickness. In contrast, little snow-ice formed in flooded areas with thicker ice and snow cover, instead nearly isothermal, highly permeable ice persisted. In spring, short-lived cold air episodes did not effectively penetrate the sea ice nor overcome the effect of ocean heat flux, thus favoring net ice thinning from bottom melt over ice thickening from snow-ice growth, in all cases. These warm ice conditions were consistent with regional remote sensing observations of earlier ice breakup and a shorter sea ice season, more recently observed in the Bellingshausen Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A portable Fourier transform spectrometer (FTS), model EM27/SUN, was deployed onboard the research vessel Polarstern to measure the column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) by means of direct sunlight absorption spectrometry. We report on technical developments as well as data calibration and reduction measures required to achieve the targeted accuracy of fractions of a percent in retrieved XCO2 and XCH4 while operating the instrument under field conditions onboard the moving platform during a 6-week cruise on the Atlantic from Cape Town (South Africa, 34° S, 18° E; 5 March 2014) to Bremerhaven (Germany, 54° N, 19° E; 14 April 2014). We demonstrate that our solar tracker typically achieved a tracking precision of better than 0.05° toward the center of the sun throughout the ship cruise which facilitates accurate XCO2 and XCH4 retrievals even under harsh ambient wind conditions. We define several quality filters that screen spectra, e.g., when the field of view was partially obstructed by ship structures or when the lines-of-sight crossed the ship exhaust plume. The measurements in clean oceanic air, can be used to characterize a spurious air-mass dependency. After the campaign, deployment of the spectrometer alongside the TCCON (Total Carbon Column Observing Network) instrument at Karlsruhe, Germany, allowed for determining a calibration factor that makes the entire campaign record traceable to World Meteorological Organization (WMO) standards. Comparisons to observations of the GOSAT satellite and concentration fields modeled by the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) demonstrate that the observational setup is well suited to provide validation opportunities above the ocean and along interhemispheric transects.