18 resultados para power series distribution
em Publishing Network for Geoscientific
Resumo:
Vertical distributions and diel migrations of the main species of micronekton, four euphausiids, one mysid, one decapod and three fishes, were described in detail in the 0-1000 m water column on a fixed station in the Northwestern Mediterranean Sea. The euphausiids Euphausia krohni and Thysanopoda aequalis, the decapod Gennadas elegans and, to a lesser extent, the fish Argyropelecus hemigymnus were shown to perform clear diel vertical migrations. Results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycles, particularly for E.krohni, T.aequalis and G.elegans. The behaviour of the euphausiid Nematoscelis megalops was more complex: it presented a repetitive bimodal day distribution and only part of its population migrated. As very weak or non-migrators we found the euphausiid Stylocheiron longicorne and the bathypelagic mysid Eucopia unguiculata, for which migration concerned only some of the older individuals. The fishes Cyclothone braueri and Cyclothone pygmaea appeared to be non-migrants. As depth increased, C.braueri was replaced by C.pygmaea, with maximum concentrations at 350-550 and 550-700 m depth, respectively.
Resumo:
A large population of the colonial pelagic tunicate Pyrosoma atlanticum occurred in April 1991 in offshore waters of the Ligurian Sea (Northwestern Mediterranean). The high numbers of colonies caught allowed their vertical distribution and diel migration in the 0-965 m water column to be described as a function of their size. Daytime depths and amplitudes of the migration were correlated with colony size. The amplitude of the migration ranged from 90 m for 3-mm-length colonies to 760 m for 51-mm-length colonies, with a mean amplitude of 410 m for the whole population, all sizes pooled. The results of horizontal hauls at a given depth around sunrise and sunset showed a marked diurnal symmetry of the migratory cycle relative to noon, and that migration of the population was not cohesive. For example, the larger the colonies, the later after sunset they reached the upper layers during their upward migration.
Resumo:
Day/night variations in the size distribution of the particulate matter >0.15 mm (PM) were studied in May 1995 during the DYNAPROC time-series cruise in the northwestern Mediterranean Sea. Data on vertical distributions of PM (>0.15 mm) and zooplankton were collected with the Underwater Video Profiler (UVP). The comparisons of the UVP data with plankton net data and POC data from water bottles indicated that more than 97% of the particles detected by the UVP were non-living particles (0.15 mm) and that the PM contributed 4-34% of the total dry weight measured on GF/F filters. Comparison of seven pairs of day and night vertical profiles performed during the cruise showed that in the upper 800 m, the mean size and the volume of particles was higher at night than during the day. During the night, the integrated volume of the PM increased on average by 32±20%. This increase corresponded to a shift of smaller size classes (<0.5 mm) towards the larger ones (>0.5 mm). During the day, the pattern was reversed, and the quantity of PM >0.5 mm decreased. During the study period, the standing stock of PM (60-800 m) decreased from 7.5 to less than 2 g m?2 but the diel variations persisted, except for two short periods in the superficial layer following a wind event. The cyclic feeding activity induced by the diel vertical migration of zooplankton could be the best candidate to explain the observed diel fluctuations in the size classes of PM in the water column. However, our results also suggest that in the upper layer additional driving forces such as the increase of the level of turbulence after a wind event or the modification of the zoo- and phytoplankton community can influence the PM temporal evolution.