13 resultados para powder diffraction
em Publishing Network for Geoscientific
Resumo:
We have performed quantitative X-ray diffraction (qXRD) analysis of 157 grab or core-top samples from the western Nordic Seas between (WNS) ~57°-75°N and 5° to 45° W. The RockJock Vs6 analysis includes non-clay (20) and clay (10) mineral species in the <2 mm size fraction that sum to 100 weight %. The data matrix was reduced to 9 and 6 variables respectively by excluding minerals with low weight% and by grouping into larger groups, such as the alkali and plagioclase feldspars. Because of its potential dual origins calcite was placed outside of the sum. We initially hypothesized that a combination of regional bedrock outcrops and transport associated with drift-ice, meltwater plumes, and bottom currents would result in 6 clusters defined by "similar" mineral compositions. The hypothesis was tested by use of a fuzzy k-mean clustering algorithm and key minerals were identified by step-wise Discriminant Function Analysis. Key minerals in defining the clusters include quartz, pyroxene, muscovite, and amphibole. With 5 clusters, 87.5% of the observations are correctly classified. The geographic distributions of the five k-mean clusters compares reasonably well with the original hypothesis. The close spatial relationship between bedrock geology and discrete cluster membership stresses the importance of this variable at both the WNS-scale and at a more local scale in NE Greenland.
Resumo:
Fifteen iron oxide accumulations from the bottoms of two Finnish lakes ("lake ores") were found to contain as much as 50% Fe. Differential X-ray powder diffraction and selective dissolution by oxalate showed that the samples consisted of poorly crystallized goethite and ferrihydrite. The crust ores of one lake had higher ferrihydrite to goethite ratios than the nodular ores of the other lake. The higher ferrihydrite proportion was attributed to a higher rate of Fe2+ supply from the ground water and/or a higher rate of oxidation as a function of water depth and bottom-sediment permeability. Values of Al-for-Fe substitution of the goethites determined from unit-cell dimensions agreed with those obtained from chemical extraction if the unit-cell volume rather than the c dimension was used. In very small goethite crystals a slight expansion of the a unit-cell dimension is probaby compensated by a corresponding contraction of the c dimension, so that a contraction of the c dimension need not necessarily be caused by Al substitution. The goethites of the two lakes differed significantly in their Al-for-Fe substitutions and hence in their unit-cell sizes, OH-bending characteristics, dehydroxylation temperatures, dissolution kinetics, and Mössbauer parameters. The difference in Al substitution (0 vs. 7 mole %) is attributed to the Al-supplying power of the bottom sediments: the silty-clayey sediments in one lake appear to have supplied A1 during goethite formation, whereas the gravelly-sandy sediments in the other lake did not. The compositions of the goethites thus reflect their environments of formation.
Resumo:
Drilling at ODP Site 641 (on the western margin of Galicia Bank, off northwestern Spain) revealed a thin, but pronounced, interval of black shale and gray-green claystone. Our high-resolution study combines the sedimentology, micropaleontology (palynomorphs and others), organic and inorganic geochemistry, and isotopic values of this layer to demonstrate the distinct nature of the sediment and prove that the sequence represents the local sedimentary expression of the global Cenomanian/Turonian Oceanic Anoxic Event (OAE) of Schlanger and Jenkyns (1976), Arthur and Schlanger (1979), and Jenkyns (1980), also called the Cenomanian/Turonian Boundary Event (CTBE). The most striking evidence is that the strong positive d13C excursion characterizing the CTBE sequences in shallow areas can be traced into a pronounced deep-sea expression, thus providing a good stratigraphic marker for the CTBE in various paleosettings. The isotopic excursion at Site 641 coincides with an extremely enriched trace metal content, with values that were previously unknown for the Cretaceous Atlantic. Similar to other CTBE occurrences, the organic carbon content is high (up to 11%) and the organic matter is of dominantly marine origin (kerogen type II). The bulk mineralogy of the CTBE sediments does not differ significantly from the general trend of Cretaceous North Atlantic sediments (dominance of smectite and zeolite with minor amounts of illite and scattered palygorskite, kaolinite, and chlorite); thus, no evidence for either increased volcanic activity nor a drastic climatic change in the borderlands was found. Results from Site 641 are compared with the CTBE section found at Site 398, DSDP Leg 47B (Vigo Seamount at the southern end of the Galicia Bank).
Resumo:
X-ray powder diffraction and optical and scanning-electron microscope analyses of sediment samples taken from four sites drilled in the Goban Spur area of the northeast Atlantic show variable diagenetic silicification of sediments at several stratigraphic horizons. The results are as follows: 1. The silicified sediments are middle Eocene at Site 548, Paleocene to lower Albian at Site 549, upper to lower Paleocene at Site 550, and lower Turanian at Site 551. 2. There are three types of these silicified sediments: nodular type in carbonate-rich host sediments, bedded type in clayey host sediments, and a type transitional between the other two. 3. Silica diagenesis is considered to progress as follows: dissolution of siliceous fossils; precipitation of opal CT in pore spaces and transformation of biogenic silica (opal A) to opal CT, development of opal CT cement; chalcedonic quartz precipitation in pore spaces and replacement of foraminiferal tests by chalcedonic quartz; and finally, transformation of opal CT to quartz, and cementation. But the strong influence of host-sediment types on diagenetic silica fades is recognized. Bedded-type silicified sediments in a clayey environment indicate a lower grade of silica diagenesis. Only very weak chalcedonic quartz formation is recognized, and there is no opal CT cementation, even in Lower Cretaceous bedded-type clayey silicified sediments. 4. The rf(101) spacing of opal CT shows two distinct trends of ordering or decrease with burial depth; one is a rapid change, in the case of nodular silicified sediments, and the other is a more gentle shift, found in bedded silicified sediments. 5. Diagenetic silica facies of the nodular type develop as irregular concentric zones around some nodule nuclei. Also, quartz-chert nodule formation occurs at rather shallower horizons, and is discordant with the trend of decreasing d(101) spacing in opal CT. 6. Silicified sediments at Site 551 are shallower than at the other sites. The diagenetic silica facies suggest the probable erosion of 300 m or more of sediment at this site. 7. The zeolites clinoptilolite and phillipsite were found in the sediment samples recovered on Leg 80. Clinoptilolite occurs from the shallower levels to the deepest horizons of diagenetically silicified zones, suggesting that clinoptilolite formation is related to diagenesis of biogenic silica. Phillipsite at Site 551 (Section 551-5-2) may originate from volcanogenie material.
Resumo:
This study reports the first crystal chemical database resulting from a detailed structural investigation of trioctahedral micas found in xenolithic ejecta produced during the AD 1631, 1872 and 1944 eruptions, three explosive episodes of recent volcanic period of Vesuvius volcano (Southern Italy). Three xenolith types were selected: metamorphic/metasomatic skarns, pyrometamorphic/hydrothermally altered nodules and mafic cumulates. They are related to different magma chemistry and effusive styles: from sub-plinian and most evolved (AD 1631 eruption) to violent strombolian with medium evolution degree (AD 1872 eruption) to vulcanian-effusive, least evolved (AD 1944 eruption) event, respectively. Both xenoliths and micas were investigated employing multiple techniques: the xenoliths were characterized by X-ray fluorescence, inductively-coupled plasma-mass spectrometry, optical microscopy, X-ray powder diffraction, and quantitative energy-dispersive microanalysis; the micas were studied by electron probe microanalysis and single crystal X-ray diffraction. The mica-bearing xenoliths show variable texture and mineralogical assemblage, clearly related to their different origin. Based on the major oxide chemistry, only one xenolithic sample falls in the skarn compositional field from the Somma-Vesuvius literature, some fall close to the skarns and cumulate fields, others plot close to the syenite/foidolite/essexite field. A subgroup of the selected ejecta does not fall or approach any of the compositional fields. Trace and rare earth element patterns show some petrological affinity between studied xenoliths and erupted magmas with typical Eu, Ta and Nb negative anomalies. Strongly depleted patterns were detected for the 1631 metamorphic/metasomatic skarns xenoliths. Three distinct mica groups were distinguished: 1) Mg-, Al-rich, low Ti-bearing, low to moderate F-bearing varieties (1631 xenolith), 2) Al-moderate, F- and Mg-rich, Ti-, Fe-poor varieties (1872 xenolith), and 3) Al-, Ti- and Fe-rich, F-poor phases (1944 xenolith). All the analysed mica crystals are 1M polytypes with the expected space group C2/m. Micas from xenoliths of the 1631 Vesuvius eruption are phlogopites characterized by a combination of low extent of oxy-type and variable extent OH-F-substitutions, as testified by the range of F concentration (from ~ 0.20 to 0.80 apfu). Micas from xenoliths of the 1872 Vesuvius eruption exhibit structural peculiarities typical of fluorophlogopites, i.e. OH-F-substitution is predominant. Micas from the xenolith of the 1944 Vesuvius eruption display features typical of oxy-substituted micas. The variability of the crystal chemical features of the studied micas are consistent with the remarkable variation of their host rocks. Micas from 1631 nodules are related to metasomatic, skarn-type environment, deriving from the metamorphosed wall-rocks hosting the magma reservoir. The fluorophlogopites from the 1872 xenoliths testify for strongly dehydrated environmental conditions compared to those of the 1631 and 1944 hosts. Finally, magma storage condition at depth, associated to a decreasing aH2O may have promoted major oxy-type substitutions in 1944 biotites.
Resumo:
Composition of clay minerals in the <0.001 mm size fraction from the uppermost layer of bottom sediments in the northern Amur Bay was determined by X-ray powder diffraction analysis, and enrichment of 33 elements in the <0.001 mm and <0.01 mm size fractions of surface sediments from a number of sites at the marginal filter of the Razdol'naya River were studied by ICP-MS. Fe, U, and chalcophile elements occur in the highest concentrations in sediments from all sampling sites within the filter. The bottom sediments are not enriched in trace, alkali, and alkaline earth elements. Maximum concentrations of chemical elements were found in deposits from the brackish part of the marginal filter, perhaps, because of formation of Fe and Mn (Al) hydroxides. Bottom sediments at the boundary between the brackish and marine parts of the filter contain the lowest concentrations of the examined elements.
Resumo:
Ferromanganese micronodules have been found on Georges Bank, off the U.S. northeast coast, distributed throughout the surficial sediments within an area about 125 km long and at least 12 km wide. These coarse, sand-sized concretions have precipitated from metal-rich interstitial waters and contain many of the textural and structural features common to other neritic nodules. Most of the nodules have accreted around detrital grains, and X-ray powder diffraction analyses indicate the presence of geothite and vernadite ( delta -MnO sub(2)) in the ferromanganese layers. Chemical analyses of the micronodules, when compared with similar data on deep-sea manganese nodules, reveal lower Mn/Fe ratios, significantly higher concentrations of V and As, comparable values of Mo, and an order of magnitude less of Co, Ni, Ce and most other, metals.