5 resultados para port community systems

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are strongly affected by season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reefs are characterized by enormous carbonate production of the organisms. It is known that rapid calcification is linked to photosynthesis under control of the carbonate equilibrium in seawater. We have established a model simulating the coexisting states of photosynthesis and calcification in order to examine the effects of photosynthesis and calcification on the carbonate system in seawater. Supposing that the rates of photosynthesis and calcification are proportional to concentrations of their inorganic carbon source, the model calculations indicate that three kinds of unique interactions of the organic and inorganic carbon productions are expected. These are photosynthetic enhancement of calcification, calcification which benefits photosynthesis and carbonate dissolution induced by respiration. The first effect appears when the photosynthetic rate is more than approximately 1.2 larger than that of calcification. This effect is caused by the increase of CO3 content and carbonate saturation degree in seawater. If photosynthesis use molecular carbon dioxide, the second effect occurs when the calcification rate is more than approximately 1.6 times larger than that of photosynthesis. Time series model experiments indicate that photosynthesis and calcification potentially enhance each other and that organic and inorganic carbon is produced more efficiently in the coexisting system than in the isolated reactions. These coexisting effects on production enhancement of photosynthesis and calcification are expected to appear not only in the internal pool of organisms but also in a reef environment which is isolated from the outer ocean during low tide. According to the measurements on the fringing type Shiraho Reef in the Ryukyu Islands, the diurnal change of water properties (pH, total alkalinity, total carbon dioxide and carbonate saturation degree) were conspicuous. This environment offers an appropriate condition for the appearance of these coexisting effects. The photosynthetic enhancement of calcification and the respiratory inducement of decalcification were observed during day-time and night-time slack-water periods, respectively. These coexisting effects, especially the photosynthetic enhancement of calcification, appear to play important roles for fluorishing coral reef communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the High Nutrient Low Chlorophyll (HNLC) surrounding waters (October-November 2011, KEOPS 2). The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Comparison with the diatom assemblage composition of a sediment trap deployed in the iron-fertilized area suggests that the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant yet heavily silicified cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis. Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15-8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Net ecosystem calcification rates (NEC) and net photosynthesis (NP) were determined from CO2 seawater parameters on the barrier coral reef of Kaneohe Bay, Oahu, Hawaii. Autosamplers were deployed to collect samples on the barrier reef every 2 hours for six 48-hour deployments, two each in June 2008, August 2009, and January/February 2010. NEC on the Kaneohe Bay barrier reef increased throughout the day and decreased at night. Net calcification continued at low rates at night except for six time periods when net dissolution was measured. The barrier reef was generally net photosynthetic (positive NP) during the day and net respiring (negative NP) at night. NP controlled the diel cycles of the partial pressure of CO2 (pCO2) and aragonite saturation state resulting in high daytime aragonite saturation state levels when calcification rates were at their peak. However, the NEC and NP diel cycles can become decoupled for short periods of time (several hours) without affecting calcification rates. On a net daily basis, net ecosystem production (NEP) of the barrier reef was found to be sometimes net photosynthetic and sometimes net respiring and ranged from -378 to 80 mmol m-2 d-1 when calculated using simple box models. Daily NEC of the barrier reef was positive (net calcification) for all deployments and ranged from 174 to 331 mmol CaCO3 m-2 d-1. Daily NEC was strongly negatively correlated with average daily pCO2 (R2 = 0.76) which ranged from 431 to 622 µatm. Daily NEC of the Kaneohe Bay barrier reef is similar to or higher than daily NEC measured on other coral reefs even though aragonite saturation state levels (mean aragonite saturation state = 2.85) are some of the lowest measured in coral reef ecosystems. It appears that while calcification rate and ?arag are correlated within a single coral reef ecosystem, this relationship does not necessarily hold between different coral reef systems. It can be expected that ocean acidification will not affect coral reefs uniformly and that some may be more sensitive to increasing pCO2 levels than others.