2 resultados para pool size

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine dissolved organic matter (DOM) represents one of the largest active carbon reservoirs on Earth. Changes in pool size or composition could have major impacts on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. Here we show that ocean acidification as expected for a 'business-as-usual' emission scenario in the year 2100 (900 µatm) does not affect the DOM pool with respect to its size and molecular composition. We applied ultrahigh-resolution mass spectrometry to monitor the production and turnover of 7,360 distinct molecular DOM features in an unprecedented long-term mesocosm study in a Swedish Fjord, covering a full cycle of marine production. DOM concentration and molecular composition did not differ significantly between present-day and year 2100 CO2 levels. Our findings are likely applicable to other coastal and productive marine ecosystems in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO2 partial pressure (pCO2) with higher N2 fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO2(150 and 900 µatm) and light (50 and 200 µmol photons m-2 s-1) on TrichodesmiumIMS101. We expand on a complementary study that demonstrated that while elevated pCO2 enhanced N2 fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO2 and light controlled the operation of the CO2-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO2 and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N2 fixation and growth at elevated pCO2 and light. We suggest that changes in the redox state of the photosynthetic electron transportchain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enableTrichodesmium to flourish in future surface oceans characterized by elevated pCO2, higher temperatures, and high light.