11 resultados para polystyrene-bound Schiff base

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oceanographic data collected by ocean research organisations in Russia, the USA, the United Kingdom, Germany, Norway, and Poland for the Barents, Kara and White Seas region are presented in this atlas. Recently declassified naval data from Norway, the USA, and the UK are also included. More than 1,000,000 oceanographic stations containing temperature and/or sea-water salinity data were originally selected. After correcting errors and eliminating duplicates, data from 206,300 checked stations were placed on CD-ROM, together with many figures describing the characteristics of both the single-input and combined data set. In addition, temperature and salinity measurements were interpolated to the following standard horizons: 0, 25, 50, 100, 150, 200, 250, 300 m, and bottom. This atlas covers the 100-year period 1898 to 1998 and is, to date, the most complete oceanographic data collection for these Arctic shelf seas. This data set is complemented by more than 9,000 measurements of sea surface temperature, which were recently digitized from ships' logbooks. They cover the same geographical area within the time period 1867-1912.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A faunal boundary found at the base of the Brunhes Chronozone at Sites 658 and 659 confirms previous observations from several locations in the Atlantic Ocean and may be classified as a supraregional "extinction event". Several benthic foraminifer species typical of the Pliocene disappear near the Brunhes/Matuyama boundary, thus marking the upper limit of a faunal zone (faunal unit). Improved chronological dating indicates that the disappearance of these species occurs over a period of about 100,000 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.