9 resultados para polar soils

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of soil properties on the accumulation of metals to wood mice (Apodemus sylvaticus) were evaluated at two sites with different pH and organic matter content of the soil. pH and organic matter content significantly affected accumulation of Cd, Cu, Pb and Zn in earthworms and vegetation. For Cd, Cu and Zn these effects propagated through the food web to the wood mouse. Soil-to-kidney ratios differed between sites: Cd: 0.15 versus 3.52, Cu: 0.37 versus 1.30 and Zn: 0.33-0.83. This was confirmed in model calculations for Cd and Zn. Results indicate that total soil concentrations may be unsuitable indicators for risks that metals pose to wildlife. Furthermore, environmental managers may, unintentionally, change soil properties while taking specific environmental measures. In this way they may affect risks of metals to wildlife, even without changes in total soil concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gravelly clay loamy and clayey soils developed from the derivatives of ultramafic rocks of the dunite-harzburgite complex of the Rai-Iz massif in the Polar Urals have been studied. They are represented by raw-humus pelozems (weakly developed clayey soils) under conditions of perfect drainage on steep slopes and by the gleyzems (Gleysols) with vivid gley color patterns in the eluvial positions on leveled elements of the relief. The magnesium released from the silicates with the high content of this element (mainly from olivine) specifies the neutral-alkaline reaction in these soils. Cryoturbation, the accumulation of raw humus, the impregnation of the soil mass with humic substances, gleyzation, and the ferrugination of the gleyed horizons are also clearly pronounced in the studied soils. Despite the high pH values, the destruction of supergene smectites in the upper horizons and ferrugination (the accumulation of iron hydroxides) in the microfissures dissecting the grains of olivine, pyroxene, and serpentine, and in decomposing plant tissues take place. The development of these processes may be related to the local acidification (neutralization) of the soil medium under the impact of biota and carbonic acids. The specificity of gleyzation in the soils developing from ultra-mafic rocks is shown in the absence of iron depletion from the fine earth material against the background of the greenish blue gley color pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC), water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions.