51 resultados para plasma spraying, surface modification, sphene, osteoblasts, titanium alloy

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of changes in the species composition of the radiolarian populations, and in the sediment chemical composition (content and mass accumulation rates of carbonate, organic carbon, and selected major and trace elements, with special attention paid to Ba) is used to reconstruct the variations in upwelling activity over the last 250 kyr in the Socotra gyre area (Somali-Socotra upwelling system, NW Indian Ocean). In the Socotra gyre (Core MD 962073 at 10°N), the variations in upwelling intensity are reconstructed by the upwelling radiolarian index (URI) while the thermocline/surface radiolarian index (TSRI) testifies to productivity variations during non-upwelling intervals. Despite an origin related both to marine and terrigenous inputs, the geochemical records of organic carbon, silica, and trace elements (Ba, P, Cu, and Zn) normalized to Al are controlled by the variations in surface paleoproductivity. The data indicate a continuous increase in upwelling intensity during the last 250 kyr with a maximum activity within the MIS 3, while high productivity periods in between the upwelling seasons occurred both during glacial and interglacial intervals. A comparison of our data with published observations from another gyre of the Somalian upwelling area located at 5°N in the Somali gyre area shows differences regarding periods of upwelling activity and their geochemical imprint. Three hypotheses are proposed to explain these differences: (1) changes in the planktonic community, resulting in more silica-rich deposits in the Socotra gyre, and more carbonate-rich deposits in the Somali gyre, that are controlled by differences in the source water of the upwelling; (2) a more important terrigenous input in the southern gyre; and (3) a different location of the sites relative to the geographic distribution of the upwelling gyres and hydrologic fronts.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.