45 resultados para planetary scales

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical and clay mineral parameters of a high accumulation marine sediment core from the Chilean continental slope (41°S) provide a 7700 yr record of rainfall variability in southern Chile related to the position of the Southern Westerlies. We especially use the iron content, measured with a time-resolution of ca. 10 yr on average, of 14C-accelerator mass spectrometry dated marine sediments as a proxy for the relative input of iron-poor Coastal Range and iron-rich Andean source rocks. Variations in this input are most likely induced by rainfall changes in the continental hinterland of the core position. Based on these interpretations, we find a pronounced rainfall variability on multi-centennial to millennial time-scales, superimposed on generally more arid conditions during the middle Holocene (7700 to 4000 cal yr B.P.) compared to the late Holocene (4000 to present). This variability and thus changes in the position of the Southern Westerlies are first compared to regional terrestrial paleoclimate data-sets from central and southern Chile. In order to derive possible wider implications and forcing mechanisms of the Holocene latitudinal shifts of the Southern Westerlies, we then compare our data to ice-core records from both tropical South America and coastal Antarctica. These records show similar bands of variability centered at ca. 900 and 1500 yr. Comparisons of band pass filters suggest a close connection of shifts of the Southern Westerlies to changes within the tropical climate system. The correlation to climate conditions in coastal Antarctica shows a more complicated picture with a phase shift at the beginning of the late Holocene coinciding with the onset of the modern state of El Niño-Southern Oscillation system. The presented data provide further evidence that the well known millennial-scale climate variability during the last glacial continued throughout the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We re-evaluate the Greenland mass balance for the recent period using low-pass Independent Component Analysis (ICA) post-processing of the Level-2 GRACE data (2002-2010) from different official providers (UTCSR, JPL, GFZ) and confirm the present important ice mass loss in the range of -70 and -90 Gt/y of this ice sheet, due to negative contributions of the glaciers on the east coast. We highlight the high interannual variability of mass variations of the Greenland Ice Sheet (GrIS), especially the recent deceleration of ice loss in 2009-2010, once seasonal cycles are robustly removed by Seasonal Trend Loess (STL) decomposition. Interannual variability leads to varying trend estimates depending on the considered time span. Correction of post-glacial rebound effects on ice mass trend estimates represents no more than 8 Gt/y over the whole ice sheet. We also investigate possible climatic causes that can explain these ice mass interannual variations, as strong correlations between GRACE-based mass balance and atmosphere/ocean parallels are established: (1) changes in snow accumulation, and (2) the influence of inputs of warm ocean water that periodically accelerate the calving of glaciers in coastal regions and, feed-back effects of coastal water cooling by fresh currents from glaciers melting. These results suggest that the Greenland mass balance is driven by coastal sea surface temperature at time scales shorter than accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality paleomagnetic records with over 800 dated reversals and decimeter-scale cyclic sediments which provide an outstanding framework to inter-calibrate major fossil groups and refine magnetic polarity chrons for the early Miocene, the entire Oligocene and the late Eocene Epoch. In order to reconstruct the climate history of the Equatorial Pacific one of the major objectives of the Pacific Equatorial Age Transect (PEAT) is the compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. Here we present extended post-cruise refinements of the shipboard composite depth scales and composite records of IODP Expedition 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established covering the time from 20 to 40 Ma. This unprecedented sedimentary compendium from the Equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new revised composite depth scales for Ocean Drilling Program Leg 198 Sites 1209, 1210, and 1211, drilled at Shatsky Rise in the western Pacific Ocean. Reinterpretation of high-resolution physical property data, with the main focus on magnetic susceptibility as the primary parameter for hole-to-hole correlation, revealed that the shipboard composite records had to be revised below 124.87 meters composite depth (mcd) for Site 1209, below 142.45 mcd for Site 1210, and below 88.64 mcd for Site 1211. The revised composite records comprise Paleogene and Cretaceous sediments at all three sites. As a result of the additional adjustments, the revised mcd records of Sites 1209 and 1210 are 13.48 and 2.69 m longer than the original spliced records, respectively. The original splice of Site 1211 has undergone minor adjustments only to match those of Sites 1209 and 1210. Moreover, detailed correlation of sections outside the new spliced records enable samples already taken to be placed into the new revised composite depth scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid climate changes at the onset of the last deglaciation and during Heinrich Event H4 were studied in detail at IMAGES cores MD95-2039 and MD95-2040 from the Western Iberian margin. A major reorganisation of surface water hydrography, benthic foraminiferal community structure, and deepwater isotopic composition commenced already 540 years before the Last Isotopic Maximum (LIM) at 17.43 cal. ka and within 670 years affected all environments. Changes were initiated by meltwater spill in the Nordic Seas and northern North Atlantic that commenced 100 years before concomitant changes were felt off western Iberia. Benthic foraminiferal associations record the drawdown of deepwater oxygenation during meltwater and subsequent Heinrich Events H1 and H4 with a bloom of dysoxic species. At a water depth of 3380 m, benthic oxygen isotopes depict the influence of brines from sea ice formation during ice-rafting pulses and meltwater spill. The brines conceivably were a source of ventilation and provided oxygen to the deeper water masses. Some if not most of the lower deep water came from the South Atlantic. Benthic foraminiferal assemblages display a multi-centennial, approximately 300-year periodicity of oxygen supply at 2470-m water depth. This pattern suggests a probable influence of atmospheric oscillations on the thermohaline convection with frequencies similar to Holocene climate variations. For Heinrich Events H1 and H4, response times of surface water properties off western Iberia to meltwater injection to the Nordic Seas were extremely short, in the range of a few decades only. The ensuing reduction of deepwater ventilation commenced within 500-600 years after the first onset of meltwater spill. These fast temporal responses lend credence to numerical simulations that indicate ocean-climate responses on similar and even faster time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Leg 178, multiple advanced piston corer holes were drilled at four sites (1095, 1096, 1098, and 1099). Cores from the holes were correlated on board to produce composite depths and optimal spliced sections, but the time limitations aboard ship caused these to be preliminary. Recomputed composite depths for Sites 1098 and 1099 in Palmer Deep are reported elsewhere in this volume (doi:10.2973/odp.proc.sr.178.2002). This paper reports recomputed composite depths and spliced sections for Sites 1095 and 1096, located on a sediment drift on the continental rise of the Pacific margin of the Antarctic Peninsula. Limits on the validity of the spliced sections arise from limited multiple coverage and possibly from the effects of ocean swell.